BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11045981)

  • 1. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state.
    Bassenge E; Sommer O; Schwemmer M; Bünger R
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2431-8. PubMed ID: 11045981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate but not lactate prevents NADH-induced myoglobin oxidation.
    Olek RA; Antosiewicz J; Popinigis J; Gabbianelli R; Fedeli D; Falcioni G
    Free Radic Biol Med; 2005 Jun; 38(11):1484-90. PubMed ID: 15890622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics.
    Mallet RT; Sun J
    Cardiovasc Res; 1999 Apr; 42(1):149-61. PubMed ID: 10435006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An increase in the redox state during reperfusion contributes to the cardioprotective effect of GIK solution.
    Suranadi IW; Demaison L; Chaté V; Peltier S; Richardson M; Leverve X
    J Appl Physiol (1985); 2012 Sep; 113(5):775-84. PubMed ID: 22797310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic modulation of cellular redox potential can improve cardiac recovery from ischemia-reperfusion injury.
    Park JW; Chun YS; Kim MS; Park YC; Kwak SJ; Park SC
    Int J Cardiol; 1998 Jul; 65(2):139-47. PubMed ID: 9706808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle.
    Gao Q; Wolin MS
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H978-H989. PubMed ID: 18567707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic redox state mediates postischemic response to pyruvate dehydrogenase stimulation.
    White LT; O'Donnell JM; Griffin J; Lewandowski ED
    Am J Physiol; 1999 Aug; 277(2):H626-34. PubMed ID: 10444488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tocopheryl quinone on the heart: model experiments with xanthine oxidase, heart mitochondria, and isolated perfused rat hearts.
    Gille L; Staniek K; Nohl H
    Free Radic Biol Med; 2001 Apr; 30(8):865-76. PubMed ID: 11295529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sevoflurane and isoflurane do not enhance the pre- and postischemic eicosanoid production in guinea pig hearts.
    Heindl B; Becker BF
    Anesth Analg; 2000 Jan; 90(1):17-24. PubMed ID: 10624969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of NO-elicited pulmonary artery relaxation and guanylate cyclase activation by NADH oxidase and SOD.
    Gupte SA; Rupawalla T; Mohazzab-H KM; Wolin MS
    Am J Physiol; 1999 May; 276(5):H1535-42. PubMed ID: 10330236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes.
    Martin BJ; Valdivia HH; Bünger R; Lasley RD; Mentzer RM
    Am J Physiol; 1998 Jan; 274(1):H8-17. PubMed ID: 9458846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 degrees C ischemia in intact hearts.
    Riess ML; Camara AK; Kevin LG; An J; Stowe DF
    Cardiovasc Res; 2004 Feb; 61(3):580-90. PubMed ID: 14962488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart.
    Camara AK; Riess ML; Kevin LG; Novalija E; Stowe DF
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1289-99. PubMed ID: 14644763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure.
    Bünger R; Mallet RT; Hartman DA
    Eur J Biochem; 1989 Mar; 180(1):221-33. PubMed ID: 2707262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O2 delivery and redox state are determinants of compartment-specific reactive O2 species in myocardial reperfusion.
    Stoner JD; Clanton TL; Aune SE; Angelos MG
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H109-16. PubMed ID: 17028160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.
    Bünger R; Mallet RT
    Biochim Biophys Acta; 1993 Sep; 1151(2):223-36. PubMed ID: 8104034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate-upregulation of lactate oxidation complex-related genes is blunted in left ventricle of myocardial infarcted rats.
    Gabriel-Costa D; Cunha TF; Paixão NA; Fortunato RS; Rego-Monteiro ICC; Barreto-Chaves MLM; Brum PC
    Braz J Med Biol Res; 2018 Oct; 51(11):e7660. PubMed ID: 30304133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption.
    Zhu X; Liu B; Zhou S; Chen YR; Deng Y; Zweier JL; He G
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1442-50. PubMed ID: 17513495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.