BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11046077)

  • 1. Three-dimensional quantitative structure activity relationship computational approaches for prediction of human in vitro intrinsic clearance.
    Ekins S; Obach RS
    J Pharmacol Exp Ther; 2000 Nov; 295(2):463-73. PubMed ID: 11046077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z
    Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of hepatic microsomal intrinsic clearance and human clearance values for drugs.
    Nikolic K; Agababa D
    J Mol Graph Model; 2009 Oct; 28(3):245-52. PubMed ID: 19713138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches.
    Hosea NA; Collard WT; Cole S; Maurer TS; Fang RX; Jones H; Kakar SM; Nakai Y; Smith BJ; Webster R; Beaumont K
    J Clin Pharmacol; 2009 May; 49(5):513-33. PubMed ID: 19299532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three and four dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors.
    Ekins S; Bravi G; Binkley S; Gillespie JS; Ring BJ; Wikel JH; Wrighton SA
    Pharmacogenetics; 1999 Aug; 9(4):477-89. PubMed ID: 10780267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of intrinsic clearance for prediction of human hepatic clearance.
    Chao P; Uss AS; Cheng KC
    Expert Opin Drug Metab Toxicol; 2010 Feb; 6(2):189-98. PubMed ID: 20073997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional quantitative structure-activity relationship analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors using a pharmacophore generation approach.
    Parenti MD; Pacchioni S; Ferrari AM; Rastelli G
    J Med Chem; 2004 Aug; 47(17):4258-67. PubMed ID: 15293997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes.
    Riley RJ; McGinnity DF; Austin RP
    Drug Metab Dispos; 2005 Sep; 33(9):1304-11. PubMed ID: 15932954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification.
    Krovat EM; Langer T
    J Med Chem; 2003 Feb; 46(5):716-26. PubMed ID: 12593652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D QSAR studies on T-type calcium channel blockers using CoMFA and CoMSIA.
    Doddareddy MR; Jung HK; Cha JH; Cho YS; Koh HY; Chang MH; Pae AN
    Bioorg Med Chem; 2004 Apr; 12(7):1613-21. PubMed ID: 15028254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-QSAR studies on UDP-glucuronosyltransferase 2B7 substrates using the pharmacophore and VolSurf approaches.
    Ako R; Dong D; Wu B
    Xenobiotica; 2012 Sep; 42(9):891-900. PubMed ID: 22494439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hologram QSAR model for the prediction of human oral bioavailability.
    Moda TL; Montanari CA; Andricopulo AD
    Bioorg Med Chem; 2007 Dec; 15(24):7738-45. PubMed ID: 17870541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks.
    Paixão P; Gouveia LF; Morais JA
    Eur J Pharm Sci; 2010 Mar; 39(5):310-21. PubMed ID: 20056146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface descriptors for protein-ligand affinity prediction.
    Zamora I; Oprea T; Cruciani G; Pastor M; Ungell AL
    J Med Chem; 2003 Jan; 46(1):25-33. PubMed ID: 12502357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Farnesyltransferase pharmacophore model derived from diverse classes of inhibitors.
    Lu A; Zhang J; Yin X; Luo X; Jiang H
    Bioorg Med Chem Lett; 2007 Jan; 17(1):243-9. PubMed ID: 17049856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes.
    Obach RS
    Drug Metab Dispos; 1999 Nov; 27(11):1350-9. PubMed ID: 10534321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.