These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11046274)

  • 1. Autocorrelation function of level velocities for ray-splitting billiards.
    Hlushchuk Y; Kohler A; Bauch S; Sirko L; Blumel R; Barth M; Stockmann H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):366-70. PubMed ID: 11046274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric correlations of the energy levels of ray-splitting billiards.
    Savytskyy N; Kohler A; Bauch S; Blümel R; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036211. PubMed ID: 11580426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaotic sound waves in a regular billiard.
    Schaadt K; Tufaile AP; Ellegaard C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026213. PubMed ID: 12636782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum stress in chaotic billiards.
    Berggren KF; Maksimov DN; Sadreev AF; Höhmann R; Kuhl U; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066209. PubMed ID: 18643352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the quantum cantori regime in quarter-stadium billiards.
    Savytskyy N; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066202. PubMed ID: 12188810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of nodal domains in the chaotic microwave ray-splitting rough billiard.
    Hul O; Savytskyy N; Tymoshchuk O; Bauch S; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066212. PubMed ID: 16486045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-time effects on eigenstate structure in sinai billiards and related systems.
    Kaplan L; Heller EJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):409-26. PubMed ID: 11088476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics.
    Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Departure of some parameter-dependent spectral statistics of irregular quantum graphs from random matrix theory predictions.
    Hul O; Seba P; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066204. PubMed ID: 19658580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test of a numerical approach to the quantization of billiards.
    Dietz B; Heine A; Heuveline V; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026703. PubMed ID: 15783452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter-dependent spectral statistics of chaotic quantum graphs: Neumann versus circular orthogonal ensemble boundary conditions.
    Hul O; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066204. PubMed ID: 21797458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry.
    Schäfer R; Barth M; Leyvraz F; Müller M; Seligman TH; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016202. PubMed ID: 12241456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-reversal-invariant hexagonal billiards with a point symmetry.
    Lima TA; do Carmo RB; Terto K; de Aguiar FM
    Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the elastic enhancement factor in a transient region between regular and chaotic dynamics.
    Ławniczak M; Białous M; Yunko V; Bauch S; Sirko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032925. PubMed ID: 25871190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard.
    Dembowski C; Graf HD; Heine A; Rehfeld H; Richter A; Schmit C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):R4516-9. PubMed ID: 11089072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards.
    Yu P; Li ZY; Xu HY; Huang L; Dietz B; Grebogi C; Lai YC
    Phys Rev E; 2016 Dec; 94(6-1):062214. PubMed ID: 28085331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermi acceleration in chaotic shape-preserving billiards.
    Batistić B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test of semiclassical amplitudes for quantum ray-splitting systems.
    Kohler A; Blümel R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7228-30. PubMed ID: 11969716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergodicity and quantum correlations in irrational triangular billiards.
    Araújo Lima T; Rodríguez-Pérez S; de Aguiar FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062902. PubMed ID: 23848743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.