These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11046313)

  • 1. Instabilities of concentration stripe patterns in ferrocolloids.
    Cebers A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):700-8. PubMed ID: 11046313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling fingering instabilities in rotating ferrofluids.
    Jackson DP; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017301. PubMed ID: 12636637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotating hele-shaw cells with ferrofluids.
    Miranda JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing a homoclinic stripe.
    Kolokolnikov T; Ward M; Tzou J; Wei J
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern formation and interface pinch-off in rotating Hele-Shaw flows: a phase-field approach.
    Folch R; Alvarez-Lacalle E; Ortín J; Casademunt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056305. PubMed ID: 20365071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skew-varicose instability in two-dimensional generalized Swift-Hohenberg equations.
    Weliwita JA; Rucklidge AM; Tobias SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036201. PubMed ID: 22060469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of centrifugally driven fingering in a tapered Hele-Shaw cell.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053014. PubMed ID: 23767627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.
    Bunton PH; Tullier MP; Meiburg E; Pojman JA
    Chaos; 2017 Oct; 27(10):104614. PubMed ID: 29092415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.
    Oliveira RM; Miranda JA; Leandro ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells.
    Brandão R; Miranda JA
    Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coriolis effects on fingering patterns under rotation.
    Alvarez-Lacalle E; Gadêlha H; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026305. PubMed ID: 18850934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotationally induced fingering patterns in a two-dimensional heterogeneous porous medium.
    Chen CY; Lin TS; Miranda JA
    Phys Rev E; 2016 Nov; 94(5-1):053105. PubMed ID: 27967138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows.
    Miranda JA; Alvarez-Lacalle E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026306. PubMed ID: 16196710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability of convection in a fluid layer rotating about an oblique axis.
    Pollicott SL; Matthews PC; Cox SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016301. PubMed ID: 12636596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell.
    Chen CY; Chen CH; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled evaporative self-assembly of poly(3-hexylthiophene) monitored with confocal polarized Raman spectroscopy.
    Xiao G; Guo Y; Lin Y; Ma X; Su Z; Wang Q
    Phys Chem Chem Phys; 2012 Dec; 14(47):16286-93. PubMed ID: 23132129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling fingering instabilities in nonflat Hele-Shaw geometries.
    dos Reis L; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066313. PubMed ID: 22304196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stripes on finite domains: Why the zigzag instability is only a partial story.
    Shapira AZ; Uecker H; Yochelis A
    Chaos; 2020 Jul; 30(7):073104. PubMed ID: 32752648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of viscous fingering in nonflat Hele-Shaw cells.
    Brandão R; Fontana JV; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053003. PubMed ID: 25493877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.