These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11046316)

  • 1. From local to global spatiotemporal chaos in a cardiac tissue model.
    Qu Z; Weiss JN; Garfinkel A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):727-32. PubMed ID: 11046316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model.
    Qu Z; Xie F; Garfinkel A; Weiss JN
    Ann Biomed Eng; 2000 Jul; 28(7):755-71. PubMed ID: 11016413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue.
    Shajahan TK; Sinha S; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion of refractoriness and induction of reentry due to chaos synchronization in a model of cardiac tissue.
    Xie Y; Hu G; Sato D; Weiss JN; Garfinkel A; Qu Z
    Phys Rev Lett; 2007 Sep; 99(11):118101. PubMed ID: 17930473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Suppression of spiral waves and spatiotemporal chaos in cardiac tissue by elevating potassium ion concentration].
    Xiao X; Tang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):29-34. PubMed ID: 22404002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A space-time adaptive method for simulating complex cardiac dynamics.
    Cherry EM; Greenside HS; Henriquez CS
    Phys Rev Lett; 2000 Feb; 84(6):1343-6. PubMed ID: 11017514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans.
    Dai S; Schaeffer DG
    Chaos; 2010 Jun; 20(2):023131. PubMed ID: 20590327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral wave stability in cardiac tissue with biphasic restitution.
    Bernus O; Verschelde H; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021917. PubMed ID: 14525016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spirals, chaos, and new mechanisms of wave propagation.
    Chen PS; Garfinkel A; Weiss JN; Karagueuzian HS
    Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):414-21. PubMed ID: 9058845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminating transient chaos in spatially extended systems.
    Lilienkamp T; Parlitz U
    Chaos; 2020 May; 30(5):051108. PubMed ID: 32491910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drift and breakup of spiral waves in reaction-diffusion-mechanics systems.
    Panfilov AV; Keldermann RH; Nash MP
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7922-6. PubMed ID: 17468396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue.
    Shajahan TK; Nayak AR; Pandit R
    PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model.
    Ten Tusscher KH; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia.
    Chudin E; Goldhaber J; Garfinkel A; Weiss J; Kogan B
    Biophys J; 1999 Dec; 77(6):2930-41. PubMed ID: 10585917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.
    Qu Z; Kil J; Xie F; Garfinkel A; Weiss JN
    Biophys J; 2000 Jun; 78(6):2761-75. PubMed ID: 10827961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of nonexcitable cells on spiral breakup in two-dimensional and three-dimensional excitable media.
    ten Tusscher KH; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):062902. PubMed ID: 14754247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.