These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11046321)

  • 1. Different hierarchy of avalanches observed in the bak-sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):771-5. PubMed ID: 11046321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic results for scaling function and moments for a different type of avalanche in the bak-sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7743-7. PubMed ID: 11138047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact equations and scaling relations for f0 avalanche in the Bak-Sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5630-3. PubMed ID: 11031618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bak-sneppen model near zero dimension.
    Dorogovtsev SN; Mendes JF; Pogorelov YG
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):295-8. PubMed ID: 11088462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbative approach to the Bak-Sneppen model.
    Felici M; Caldarelli G; Gabrielli A; Pietronero L
    Phys Rev Lett; 2001 Feb; 86(9):1896-9. PubMed ID: 11290276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bak-Sneppen-type models and rank-driven processes.
    Grinfeld M; Knight PA; Wade AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041124. PubMed ID: 22181104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dc = 4 is the upper critical dimension for the Bak-Sneppen model.
    Boettcher S; Paczuski M
    Phys Rev Lett; 2000 Mar; 84(10):2267-70. PubMed ID: 11017260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.
    Dashti-Naserabadi H; Najafi MN
    Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness noise in the Bak-Sneppen evolution model in high dimensions.
    Chhimpa R; Singh A; Yadav AC
    Phys Rev E; 2024 Sep; 110(3-1):034130. PubMed ID: 39425441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levy-nearest-neighbors Bak-Sneppen model.
    Cafiero R; De Los Rios P; Valleriani A; Vega JL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):R1111-4. PubMed ID: 11969930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic approach to the Bak-Sneppen model.
    Caldarelli G; Felici M; Gabrielli A; Pietronero L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046101. PubMed ID: 12005920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical results for sandpile models of self-organized criticality with multiple topplings.
    Paczuski M; Bassler KE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5347-52. PubMed ID: 11089096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap function in the finite Bak-Sneppen model.
    Tabelow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047101. PubMed ID: 11308977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.
    Aegerter CM; Günther R; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051306. PubMed ID: 12786145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random networks created by biological evolution.
    Slanina F; Kotrla M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6170-7. PubMed ID: 11101948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A differential equation for the asymptotic fitness distribution in the Bak-Sneppen model with five species.
    Schlemm E
    Math Biosci; 2015 Sep; 267():53-60. PubMed ID: 26144945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bak-Sneppen model: Local equilibrium and critical value.
    Fraiman D
    Phys Rev E; 2018 Apr; 97(4-1):042123. PubMed ID: 29758766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorbing-state phase transitions with extremal dynamics.
    Dickman R; Garcia GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066113. PubMed ID: 16089826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized criticality: robustness of scaling exponents.
    Cernák J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046141. PubMed ID: 12005960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between self-organized criticality and grain aspect ratio in granular piles.
    Denisov DV; Villanueva YY; Lőrincz KA; May S; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051309. PubMed ID: 23004752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.