These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11046461)

  • 1. Cahn-hilliard theory for unstable granular fluids.
    van Noije TP ; Ernst MH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1765-82. PubMed ID: 11046461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical density functional theory and its application to spinodal decomposition.
    Archer AJ; Evans R
    J Chem Phys; 2004 Sep; 121(9):4246-54. PubMed ID: 15332972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acousto-spinodal decomposition of compressible polymer solutions: early stage analysis.
    Rasouli G; Rey AD
    J Chem Phys; 2011 May; 134(18):184901. PubMed ID: 21568529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging length and time scales in sheared demixing systems: from the Cahn-Hilliard to the Doi-Ohta model.
    Jelić A; Ilg P; Ottinger HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011131. PubMed ID: 20365347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation near the spinodal: limitations of mean field density functional theory.
    Wilemski G; Li JS
    J Chem Phys; 2004 Oct; 121(16):7821-8. PubMed ID: 15485244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early time kinetics of systems with spatial symmetry breaking.
    Dominguez R; Barros K; Klein W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041121. PubMed ID: 19518187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids.
    Tóth GI; Zarifi M; Kvamme B
    Phys Rev E; 2016 Jan; 93(1):013126. PubMed ID: 26871173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics.
    Puglisi A; Assaf M; Fouxon I; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021305. PubMed ID: 18352020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinodal-assisted nucleation during symmetry-breaking phase transitions.
    Vega DA; Gómez LR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051607. PubMed ID: 19518467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids.
    González-Segredo N; Nekovee M; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046304. PubMed ID: 12786484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear state of freely evolving granular gases.
    Brey JJ; Ruiz-Montero MJ; Domínguez A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041301. PubMed ID: 18999412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional Turbulence in Symmetric Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade.
    Perlekar P; Pal N; Pandit R
    Sci Rep; 2017 Mar; 7():44589. PubMed ID: 28322219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of coarsening and vortex formation in vibrated granular rods.
    Aranson IS; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021305. PubMed ID: 12636669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic derivation of Cahn-Hilliard fluid models.
    Giovangigli V
    Phys Rev E; 2021 Nov; 104(5-1):054109. PubMed ID: 34942763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and evolution of target patterns in Cahn-Hilliard flows.
    Fan X; Diamond PH; Chacón L
    Phys Rev E; 2017 Oct; 96(4-1):041101. PubMed ID: 29347565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional Cahn-Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures.
    König B; Ronsin OJJ; Harting J
    Phys Chem Chem Phys; 2021 Nov; 23(43):24823-24833. PubMed ID: 34714899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuating hydrodynamics for dilute granular gases.
    Brey JJ; Maynar P; García de Soria MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051305. PubMed ID: 19518447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinodal decomposition in a binary polymer mixture: dynamic self-consistent-field theory and Monte Carlo simulations.
    Reister E; Müller M; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041804. PubMed ID: 11690045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle x-ray scattering study of kinetics of spinodal decomposition in N-isopropylacrylamide gels.
    Liao G; Xie Y; Ludwig KF; Bansil R; Gallagher P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4473-81. PubMed ID: 11970302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.