These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11046486)

  • 1. Transition from amplified spontaneous emission to laser action in strongly scattering media.
    Cao H; Xu JY; Chang S; Ho ST
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1985-9. PubMed ID: 11046486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random Lasing Engineering in Poly-(9-9dioctylfluorene) Active Waveguides Deposited on Wrinkles Corrugated Surfaces.
    Anni M; Rhee D; Lee WK
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9385-9393. PubMed ID: 30732449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random lasing in ballistic and diffusiveregimes for macroporous silica-based systems with tunable scattering strength.
    Meng X; Fujita K; Murai S; Konishi J; Mano M; Tanaka K
    Opt Express; 2010 Jun; 18(12):12153-60. PubMed ID: 20588338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-assisted random lasing from a single-mode fiber tip.
    Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lasing optical cavities based on macroscopic scattering elements.
    Consoli A; López C
    Sci Rep; 2017 Jan; 7():40141. PubMed ID: 28071675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach.
    Pusch A; Wuestner S; Hamm JM; Tsakmakidis KL; Hess O
    ACS Nano; 2012 Mar; 6(3):2420-31. PubMed ID: 22329714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conventional unidirectional laser action enhanced by dye confined in nanoparticle scatters.
    Enciso E; Costela A; Garcia-Moreno I; Martin V; Sastre R
    Langmuir; 2010 May; 26(9):6154-7. PubMed ID: 20387817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable random lasers via phase transition for information encryption.
    Tong J; Ruan J; Iqbal N; Ma H; Ge K; Lin C; Zhai T
    Opt Express; 2023 Sep; 31(19):31661-31669. PubMed ID: 37710680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial confinement of laser light in active random media.
    Cao H; Xu JY; Zhang DZ; Chang S; Ho ST; Seelig EW; Liu X; Chang RP
    Phys Rev Lett; 2000 Jun; 84(24):5584-7. PubMed ID: 10991000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random laser oscillation from an organic fluorescent dye loaded inside a porous zirconia medium.
    Sakurayama Y; Onodera T; Araki Y; Wada T; Oikawa H
    RSC Adv; 2021 Sep; 11(51):32030-32037. PubMed ID: 35495517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on transition from photonic-crystal laser to random laser.
    Fujii G; Matsumoto T; Takahashi T; Ueta T
    Opt Express; 2012 Mar; 20(7):7300-15. PubMed ID: 22453411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random anti-lasing through coherent perfect absorption in a disordered medium.
    Pichler K; Kühmayer M; Böhm J; Brandstötter A; Ambichl P; Kuhl U; Rotter S
    Nature; 2019 Mar; 567(7748):351-355. PubMed ID: 30833737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser emission from mirrorless waveguides based on photosensitized polymers incorporating POSS.
    Cerdán L; Costela A; García-Moreno I; García O; Sastre R
    Opt Express; 2010 May; 18(10):10247-56. PubMed ID: 20588878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization.
    Milner V; Genack AZ
    Phys Rev Lett; 2005 Feb; 94(7):073901. PubMed ID: 15783816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random Lasing at Localization Transition in a Colloidal Suspension (TiO
    Jiménez-Villar E; da Silva IF; Mestre V; Wetter NU; Lopez C; de Oliveira PC; Faustino WM; de Sá GF
    ACS Omega; 2017 Jun; 2(6):2415-2421. PubMed ID: 31457590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue-light-emitting ZnSe random laser.
    Takahashi T; Nakamura T; Adachi S
    Opt Lett; 2009 Dec; 34(24):3923-5. PubMed ID: 20016659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent amplification of an ultrashort pulse in a high- and swept-gain medium with level degeneracy.
    Kim CM; Lee J; Janulewicz KA
    Phys Rev Lett; 2010 Feb; 104(5):053901. PubMed ID: 20366762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random lasing and weak localization of light in dye-doped nematic liquid crystals.
    Strangi G; Ferjani S; Barna V; De Luca A; Versace C; Scaramuzza N; Bartolino R
    Opt Express; 2006 Aug; 14(17):7737-44. PubMed ID: 19529143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random laser based method for direct measurement of scattering properties.
    Tommasi F; Ignesti E; Fini L; Martelli F; Cavalieri S
    Opt Express; 2018 Oct; 26(21):27615-27627. PubMed ID: 30469824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of random lasing modes in weakly scattering systems.
    Wu X; Cao H
    Opt Lett; 2007 Nov; 32(21):3089-91. PubMed ID: 17975606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.