These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11046499)

  • 1. Solving the bound-state Schrodinger equation by reproducing kernel interpolation.
    Hu XG; Ho TS; Rabitz H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2074-85. PubMed ID: 11046499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator.
    Klus S; Nüske F; Hamzi B
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerically complemented analytic method for solving the time-independent one-dimensional Schrödinger equation.
    Selg M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056701. PubMed ID: 11736135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The construction of a two-dimensional reproducing kernel function and its application in a biomedical model.
    Guo Q; Shen ST
    Technol Health Care; 2016 Apr; 24 Suppl 2():S477-86. PubMed ID: 27163307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The State Following Approximation Method.
    Rosenfeld JA; Kamalapurkar R; Dixon WE
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1716-1730. PubMed ID: 30369450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time-reversible integrator for the time-dependent Schrödinger equation on an adaptive grid.
    Choi S; Vaníček J
    J Chem Phys; 2019 Dec; 151(23):234102. PubMed ID: 31864241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction from free-breathing cardiac MRI data using reproducing kernel Hilbert spaces.
    Cîndea N; Odille F; Bosser G; Felblinger J; Vuissoz PA
    Magn Reson Med; 2010 Jan; 63(1):59-67. PubMed ID: 20027598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, Spectroscopic, and Dynamic Properties of Li2+(X2∑g+) in Interaction with Krypton Atom.
    Saidi S; Mabrouk N; Dhiflaoui J; Berriche H
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier deconvolution reveals the role of the Lorentz function as the convolution kernel of narrow photon beams.
    Djouguela A; Harder D; Kollhoff R; Foschepoth S; Kunth W; Rühmann A; Willborn K; Poppe B
    Phys Med Biol; 2009 May; 54(9):2807-27. PubMed ID: 19369712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation.
    Dawes R; Carrington T
    J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate calculations on 9 Λ-S and 28 Ω states of NSe radical in the gas phase: potential energy curves, spectroscopic parameters and spin-orbit couplings.
    Shi D; Li P; Sun J; Zhu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():109-19. PubMed ID: 23988526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues.
    Zhang ZW; Wang H; Qin QH
    Int J Mol Sci; 2015 Jan; 16(1):2001-19. PubMed ID: 25603180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction-free beams in fractional Schrödinger equation.
    Zhang Y; Zhong H; Belić MR; Ahmed N; Zhang Y; Xiao M
    Sci Rep; 2016 Apr; 6():23645. PubMed ID: 27097656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-space approach to solving the time-independent Schrödinger equation.
    Shimshovitz A; Tannor DJ
    Phys Rev Lett; 2012 Aug; 109(7):070402. PubMed ID: 23006346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
    Jayasumana S; Hartley R; Salzmann M; Li H; Harandi M
    IEEE Trans Pattern Anal Mach Intell; 2015 Dec; 37(12):2464-77. PubMed ID: 26539851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducing Kernel Hilbert space method for optimal interpolation of potential field data.
    Maltz J; De Mello Koch R; Willis A
    IEEE Trans Image Process; 1998; 7(12):1725-30. PubMed ID: 18276239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nystrom plus correction method for solving bound-state equations in momentum space.
    Tang A; Norbury JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066703. PubMed ID: 11415254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.
    Heaps CW; Mazziotti DA
    J Chem Phys; 2016 Apr; 144(16):164108. PubMed ID: 27131532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified approach to optimal image interpolation problems based on linear partial differential equation models.
    Chen G; de Figueiredo RP
    IEEE Trans Image Process; 1993; 2(1):41-9. PubMed ID: 18296193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.