These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 1104762)

  • 21. Electrical responses of supporting cells in the frog taste organ to chemical stimuli.
    Sata O; Sato T
    Comp Biochem Physiol A Comp Physiol; 1990; 95(1):115-20. PubMed ID: 1968805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conductance change associated with receptor potentials of gustatory cells in rat.
    Ozeki M
    J Gen Physiol; 1971 Dec; 58(6):688-99. PubMed ID: 5120394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ionic basis of the receptor potential of frog taste cells induced by water stimuli.
    Okada Y; Miyamoto T; Sato T
    J Exp Biol; 1993 Jan; 174():1-17. PubMed ID: 8440962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Proceedings: 366. Membrane resistance change in the frog taste cells in response to water and sodium chloride (author's transl)].
    Sato T
    Nihon Seirigaku Zasshi; 1973; 35(8):536. PubMed ID: 4799921
    [No Abstract]   [Full Text] [Related]  

  • 25. Topographical difference in taste organ density and its sensitivity of frog tongue.
    Sato T; Ohkusa M; Okada Y; Sasaki M
    Comp Biochem Physiol A Comp Physiol; 1983; 76(2):233-9. PubMed ID: 6139204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of gap junction blocker beta-glycyrrhetinic acid on taste disk cells in frog.
    Sato T; Nishishita K; Okada Y; Toda K
    Cell Mol Neurobiol; 2009 Jun; 29(4):503-12. PubMed ID: 19145483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic basis of salt-induced receptor potential in frog taste cells.
    Miyamoto T; Okada Y; Sato T
    Comp Biochem Physiol A Comp Physiol; 1989; 94(4):591-5. PubMed ID: 2575944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of membrane-bound calcium in taste reception of the frog.
    Kamo N; Kashiwagura T; Kobatake Y; Kurihara K
    J Physiol; 1978 Sep; 282():115-29. PubMed ID: 31457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical properties of salt induced response across the tongue epithelium in frogs.
    Soeda H; Sakudo F
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):503-9. PubMed ID: 2486707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptor potential of the frog taste cell in response to bitter stimuli.
    Sato T; Okada Y; Miyamoto T
    Physiol Behav; 1994 Dec; 56(6):1133-9. PubMed ID: 7878082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taste transduction mechanism: similar effects of various modifications of gustatory receptors on neural responses to chemical and electrical stimulation in the frog.
    Kashiwayanagi M; Yoshii K; Kobatake Y; Kurihara K
    J Gen Physiol; 1981 Sep; 78(3):259-75. PubMed ID: 6173463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of gustatory cells in the nucleus of the solitary tract of the hamster after NaCl or amiloride adaptation.
    Smith DV; Liu H; Vogt MB
    J Neurophysiol; 1996 Jul; 76(1):47-58. PubMed ID: 8836208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arterial perfusion of frog tongue for intracellular recording of taste cell receptor potential.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):247-50. PubMed ID: 2864165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response characteristics of rat taste cells to potassium benzoate.
    Sato T; Beidler LM
    Comp Biochem Physiol A Comp Physiol; 1983; 76(4):777-81. PubMed ID: 6142785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells.
    Sato T; Nishishita K; Kato Y; Okada Y; Toda K
    Chem Senses; 2006 May; 31(4):307-13. PubMed ID: 16469796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of Na(+)-dependent K+ conductance in the apical membrane of frog taste cells.
    Miyamoto T; Fujiyama R; Okada Y; Sato T
    Brain Res; 1996 Apr; 715(1-2):79-85. PubMed ID: 8739625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltage dependence of the rat chorda tympani response to Na+ salts: implications for the functional organization of taste receptor cells.
    Ye Q; Heck GL; DeSimone JA
    J Neurophysiol; 1993 Jul; 70(1):167-78. PubMed ID: 8395573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of mono- and divalent salt transduction mechanisms in frog gustation evidenced by cobalt chloride treatment.
    Herness MS
    J Neurophysiol; 1991 Aug; 66(2):580-9. PubMed ID: 1774587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ionic basis of the receptor potential of frog taste cells induced by sugar stimuli.
    Okada Y; Miyamoto T; Sato T
    J Exp Biol; 1992 Jan; 162():23-36. PubMed ID: 1372639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phasic and tonic components of gustatory response in the frog.
    Kashiwagura T; Kamo N; Kurihara K; Kobatake Y
    Am J Physiol; 1976 Oct; 231(4):1097-104. PubMed ID: 185910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.