These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11049138)

  • 1. Magnetic resonance technology in training and sports.
    Price TB
    Br J Sports Med; 2000 Oct; 34(5):323-4. PubMed ID: 11049138
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptation of human skeletal muscle to exercise-training.
    Simoneau JA
    Int J Obes Relat Metab Disord; 1995 Oct; 19 Suppl 4():S9-13. PubMed ID: 8581103
    [No Abstract]   [Full Text] [Related]  

  • 3. Large energetic adaptations of elderly muscle to resistance and endurance training.
    Jubrias SA; Esselman PC; Price LB; Cress ME; Conley KE
    J Appl Physiol (1985); 2001 May; 90(5):1663-70. PubMed ID: 11299253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging and spectroscopy in the evaluation of neuromuscular disorders and fatigue.
    Tonon C; Gramegna LL; Lodi R
    Neuromuscul Disord; 2012 Dec; 22 Suppl 3():S187-91. PubMed ID: 23182637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise over-stress and maximal muscle oxidative metabolism: a 31P magnetic resonance spectroscopy case report.
    Newcomer BR; Sirikul B; Hunter GR; Larson-Meyer E; Bamman M
    Br J Sports Med; 2005 May; 39(5):302-6. PubMed ID: 15849297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging and spectroscopy in studying exercise in children.
    Cooper DM; Barstow TJ
    Exerc Sport Sci Rev; 1996; 24():475-99. PubMed ID: 8744259
    [No Abstract]   [Full Text] [Related]  

  • 7. The use of near infrared spectroscopy in sports medicine.
    Quaresima V; Lepanto R; Ferrari M
    J Sports Med Phys Fitness; 2003 Mar; 43(1):1-13. PubMed ID: 12629456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in muscle proton transverse relaxation times and acidosis during exercise and recovery.
    Cheng HA; Robergs RA; Letellier JP; Caprihan A; Icenogle MV; Haseler LJ
    J Appl Physiol (1985); 1995 Oct; 79(4):1370-8. PubMed ID: 8567585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive assessment of age, gender, and exercise effects on skeletal muscle: Initial experience with T
    Peng XG; Wang Y; Zhang S; Bai Y; Mao H; Teng GJ; Ju S
    J Magn Reson Imaging; 2017 Jul; 46(1):61-70. PubMed ID: 27862560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramyocellular lipids: effect of age, obesity, and exercise.
    Franklin RM; Kanaley JA
    Phys Sportsmed; 2009 Apr; 37(1):20-6. PubMed ID: 20048484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Physiopathology of exercise. Muscular adaptations].
    Belardinelli R
    Ital Heart J Suppl; 2000 Mar; 1(3):352-60. PubMed ID: 10815263
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ; Mohr M; Klarskov C; Kristensen M; Krustrup P; Juel C; Bangsbo J
    J Physiol; 2004 Feb; 554(Pt 3):857-70. PubMed ID: 14634198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional magnetic resonance imaging of muscle.
    Meyer RA; Prior BM
    Exerc Sport Sci Rev; 2000 Apr; 28(2):89-92. PubMed ID: 10902092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength training and aerobic exercise: comparison and contrast.
    Knuttgen HG
    J Strength Cond Res; 2007 Aug; 21(3):973-8. PubMed ID: 17685726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise.
    McKenna MJ; Harmer AR; Fraser SF; Li JL
    Acta Physiol Scand; 1996 Mar; 156(3):335-46. PubMed ID: 8729694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.
    Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA
    J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle.
    Wojtaszewski JF; Richter EA
    Essays Biochem; 2006; 42():31-46. PubMed ID: 17144878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.