BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 11049184)

  • 1. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning.
    Söderberg J; Alm Carlsson G; Ahnesjö A
    Phys Med Biol; 2003 Oct; 48(20):3327-44. PubMed ID: 14620061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.
    Gudowska I; Brahme A; Andreo P; Gudowski W; Kierkegaard J
    Phys Med Biol; 1999 Sep; 44(9):2099-125. PubMed ID: 10495108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
    Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K
    Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a pencil beam model-based treatment planning system for fast neutron therapy.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy.
    Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M
    Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of secondary neutrons in particle therapy by Monte Carlo simulations.
    Vedelago J; Geser FA; Muñoz ID; Stabilini A; Yukihara EG; Jäkel O
    Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34905742
    [No Abstract]   [Full Text] [Related]  

  • 14. Monte Carlo study of correction factors for the use of plastic phantoms in clinical electron dosimetry.
    Araki F
    Med Phys; 2007 Nov; 34(11):4368-77. PubMed ID: 18072502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV.
    Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM
    Radiat Prot Dosimetry; 2011 Nov; 147(4):498-511. PubMed ID: 21233098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver.
    Belley MD; Segars WP; Kapadia AJ
    Med Phys; 2014 Jun; 41(6):063902. PubMed ID: 24877842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluence correction factors in plastic phantoms for clinical proton beams.
    Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S
    Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System.
    Moffitt GB; Stewart RD; Sandison GA; Goorley JT; Argento DC; Jevremovic T; Emery R; Wootton LS; Parvathaneni U; Laramore GE
    Phys Med Biol; 2018 May; 63(10):105008. PubMed ID: 29637903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.