BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11049681)

  • 1. Comparison of Different Approaches to the Determination of the Work of Critical Cluster Formation.
    Baidakov VG; Boltashev GS; Schmelzer JW
    J Colloid Interface Sci; 2000 Nov; 231(2):312-321. PubMed ID: 11049681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical and generalized Gibbs' approaches and the work of critical cluster formation in nucleation theory.
    Schmelzer JW; Boltachev GSh; Baidakov VG
    J Chem Phys; 2006 May; 124(19):194503. PubMed ID: 16729821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of first-order phase transitions in multicomponent systems: a new theoretical approach.
    Schmelzer JW; Gokhman AR; Fokin VM
    J Colloid Interface Sci; 2004 Apr; 272(1):109-33. PubMed ID: 14985029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions.
    Schmelzer JW; Abyzov AS; Möller J
    J Chem Phys; 2004 Oct; 121(14):6900-17. PubMed ID: 15473749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach.
    Parra IE; Cordero-Gracia M; Gómez M
    J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Gibbs' approach in heterogeneous nucleation.
    Abyzov AS; Schmelzer JW
    J Chem Phys; 2013 Apr; 138(16):164504. PubMed ID: 23635154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended version of the van der Waals capillarity theory.
    Baidakov VG; Boltachev GSh
    J Chem Phys; 2004 Nov; 121(17):8594-601. PubMed ID: 15511185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions.
    Megías-Alguacil D; Durán JD; Delgado AV
    J Colloid Interface Sci; 2000 Nov; 231(1):74-83. PubMed ID: 11082250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous nucleation in solutions: generalized Gibbs' approach.
    Abyzov AS; Schmelzer JW
    J Chem Phys; 2014 Jun; 140(24):244706. PubMed ID: 24985667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation in cylindrical capillaries.
    Husowitz B; Talanquer V
    J Chem Phys; 2004 Oct; 121(16):8021-8. PubMed ID: 15485266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy and the Tolman Parameter in Nucleation Theory.
    Schmelzer JWP; Abyzov AS; Baidakov VG
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connection between the virial equation of state and physical clusters in a low density vapor.
    Merikanto J; Zapadinsky E; Lauri A; Napari I; Vehkamäki H
    J Chem Phys; 2007 Sep; 127(10):104303. PubMed ID: 17867743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems.
    MacDowell LG; Shen VK; Errington JR
    J Chem Phys; 2006 Jul; 125(3):34705. PubMed ID: 16863371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.