These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11049689)

  • 1. Hamaker Constants of Systems Involving Water Obtained from a Dielectric Function That Fulfills the f Sum Rule.
    Fernández-Varea JM; Garcia-Molina R
    J Colloid Interface Sci; 2000 Nov; 231(2):394-397. PubMed ID: 11049689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Approximation of Water Dielectric Permittivity for Calculation of Hamaker Constants.
    Nguyen AV
    J Colloid Interface Sci; 2000 Sep; 229(2):648-651. PubMed ID: 10985848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Dielectric Function for Water and Its Application to van der Waals Forces.
    Dagastine RR; Prieve DC; White LR
    J Colloid Interface Sci; 2000 Nov; 231(2):351-358. PubMed ID: 11049685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral parameters and Hamaker constants of silicon hydride compounds and organic solvents.
    Masuda T; Matsuki Y; Shimoda T
    J Colloid Interface Sci; 2009 Dec; 340(2):298-305. PubMed ID: 19781714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of temperature effect on far-infrared spectra of liquid H2O and D2O by analytical theory and molecular dynamic simulations.
    Zasetsky AY; Gaiduk VI
    J Phys Chem A; 2007 Jun; 111(25):5599-606. PubMed ID: 17552503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular theory of dielectric relaxation in nematic dimers.
    Stocchero M; Ferrarini A; Moro GJ; Dunmur DA; Luckhurst GR
    J Chem Phys; 2004 Oct; 121(16):8079-97. PubMed ID: 15485272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Experimental Way of Measuring the Hamaker Constant A(11) of Divided Solids by Immersion Calorimetry in Apolar Liquids.
    Médout-Marère V
    J Colloid Interface Sci; 2000 Aug; 228(2):434-437. PubMed ID: 10926485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of water dynamics in binary mixtures of water and dimethyl sulfoxide.
    Harpham MR; Levinger NE; Ladanyi BM
    J Phys Chem B; 2008 Jan; 112(2):283-93. PubMed ID: 18052269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric model and theoretical analysis of cationic reverse micellar solutions in CTAB/isooctane/n-hexanol/water systems.
    Yang L; Zhao K
    Langmuir; 2007 Aug; 23(17):8732-9. PubMed ID: 17636993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible simple point-charge water model with improved liquid-state properties.
    Wu Y; Tepper HL; Voth GA
    J Chem Phys; 2006 Jan; 124(2):024503. PubMed ID: 16422607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A restricted quantum reaction path Hamiltonian: theory, discrete variable representation propagation algorithm, and applications.
    González J; Giménez X; Bofill JM
    J Chem Phys; 2009 Aug; 131(5):054108. PubMed ID: 19673552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the hamaker coefficient for a fuel-cell-supported catalyst system.
    Subbaraman R; Zawodzinski T; Mann JA
    Langmuir; 2008 Aug; 24(15):8245-53. PubMed ID: 18582125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing the solubility minima of n-alkanes in water by soft-SAFT.
    Vega LF; Llovell F; Blas FJ
    J Phys Chem B; 2009 May; 113(21):7621-30. PubMed ID: 19413358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface.
    Emfietzoglou D; Nikjoo H
    Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Conductivity and Dielectric Dispersion Phenomena of Concentrated TiO(2) Suspensions.
    Bach G; Abelard P; Blanchart P
    J Colloid Interface Sci; 2000 Aug; 228(2):423-427. PubMed ID: 10926483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hamaker constants of iron oxide nanoparticles.
    Faure B; Salazar-Alvarez G; Bergström L
    Langmuir; 2011 Jul; 27(14):8659-64. PubMed ID: 21644514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature, pressure, and isotope effects on the structure and properties of liquid water: a lattice approach.
    Hakem IF; Boussaid A; Benchouk-Taleb H; Bockstaller MR
    J Chem Phys; 2007 Dec; 127(22):224106. PubMed ID: 18081389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonlinear dielectric behavior of water: comparisons of various approaches to the nonlinear dielectric increment.
    Fulton RL
    J Chem Phys; 2009 May; 130(20):204503. PubMed ID: 19485453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.