These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 11050042)
21. Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta. Malakul W; Thirawarapan S; Suvitayavat W; Woodman OL Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):192-200. PubMed ID: 17941894 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries. Petersson J; Zygmunt PM; Högestätt ED Br J Pharmacol; 1997 Apr; 120(7):1344-50. PubMed ID: 9105711 [TBL] [Abstract][Full Text] [Related]
23. Apocynin normalizes hyperreactivity to phenylephrine in mesenteric arteries from cholesterol-fed mice by improving endothelium-derived hyperpolarizing factor response. Matsumoto T; Miyamori K; Kobayashi T; Kamata K Free Radic Biol Med; 2006 Oct; 41(8):1289-303. PubMed ID: 17015176 [TBL] [Abstract][Full Text] [Related]
24. [Role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations of rats]. Zhao HY; Liu Q; Chi BR Yao Xue Xue Bao; 2005 Jun; 40(6):491-5. PubMed ID: 16144311 [TBL] [Abstract][Full Text] [Related]
25. Halothane inhibition of acetylcholine-induced relaxation in rat mesenteric artery and aorta. Iranami H; Hatano Y; Tsukiyama Y; Yamamoto M; Maeda H; Mizumoto K Can J Anaesth; 1997 Nov; 44(11):1196-203. PubMed ID: 9398962 [TBL] [Abstract][Full Text] [Related]
27. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Sunano S; Watanabe H; Tanaka S; Sekiguchi F; Shimamura K Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983 [TBL] [Abstract][Full Text] [Related]
28. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related]
29. Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery. Wei W; Chen ZW; Yang Q; Jin H; Furnary A; Yao XQ; Yim AP; He GW Vascul Pharmacol; 2007 Apr; 46(4):253-9. PubMed ID: 17174609 [TBL] [Abstract][Full Text] [Related]
30. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. Dong H; Jiang Y; Cole WC; Triggle CR Br J Pharmacol; 2000 Aug; 130(8):1983-91. PubMed ID: 10952691 [TBL] [Abstract][Full Text] [Related]
31. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries. Pourageaud F; Bappel-Gozalbes C; Marthan R; Freslon JL Br J Pharmacol; 2000 Nov; 131(6):1211-9. PubMed ID: 11082130 [TBL] [Abstract][Full Text] [Related]
32. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries. Delaey C; Boussery K; Breyne J; Vanheel B; Van de Voorde J Exp Eye Res; 2007 Jun; 84(6):1067-73. PubMed ID: 17418119 [TBL] [Abstract][Full Text] [Related]
33. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306 [TBL] [Abstract][Full Text] [Related]
34. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia. Taniguchi J; Honda H; Shibusawa Y; Iwata T; Notoya Y Vascul Pharmacol; 2005 Jun; 43(1):47-55. PubMed ID: 15953770 [TBL] [Abstract][Full Text] [Related]
35. Differential effects of ouabain on the vasodilator actions of nitric oxide and S-nitrosothiols in vivo: relevance to the identity of EDRF/EDHF. Lewis SJ; Travis MD; Hashmi-Hill MP; Sandock K; Robertson TP; Bates JN Vascul Pharmacol; 2006 Dec; 45(6):383-94. PubMed ID: 16861050 [TBL] [Abstract][Full Text] [Related]
36. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Wang X; Loutzenhiser R Am J Physiol Renal Physiol; 2002 Jan; 282(1):F124-32. PubMed ID: 11739120 [TBL] [Abstract][Full Text] [Related]
37. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine. Woodley N; Meunier RL; Barclay JK Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094 [TBL] [Abstract][Full Text] [Related]
38. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
39. Endothelium dependent relaxation in rabbit genital resistance arteries is predominantly mediated by endothelial-derived hyperpolarizing factor in females and nitric oxide in males. Morton JS; Jackson VM; Daly CJ; McGrath JC J Urol; 2007 Feb; 177(2):786-91. PubMed ID: 17222682 [TBL] [Abstract][Full Text] [Related]
40. NO contributes to EDHF-like responses in rat small arteries: a role for NO stores. Chauhan S; Rahman A; Nilsson H; Clapp L; MacAllister R; Ahluwalia A Cardiovasc Res; 2003 Jan; 57(1):207-16. PubMed ID: 12504830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]