BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11050223)

  • 1. How important are entropic contributions to enzyme catalysis?
    Villa J; Strajbl M; Glennon TM; Sham YY; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11899-904. PubMed ID: 11050223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy and Enzyme Catalysis.
    Åqvist J; Kazemi M; Isaksen GV; Brandsdal BO
    Acc Chem Res; 2017 Feb; 50(2):199-207. PubMed ID: 28169522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme catalysis by entropy without Circe effect.
    Kazemi M; Himo F; Åqvist J
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2406-11. PubMed ID: 26755610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The entropic contributions in vitamin B12 enzymes still reflect the electrostatic paradigm.
    Schopf P; Mills MJ; Warshel A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4328-33. PubMed ID: 25805820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A β-NMR study of the depth, temperature, and molecular-weight dependence of secondary dynamics in polystyrene: Entropy-enthalpy compensation and dynamic gradients near the free surface.
    McKenzie I; Fujimoto D; Karner VL; Li R; MacFarlane WA; McFadden RML; Morris GD; Pearson MR; Raegen AN; Stachura M; Ticknor JO; Forrest JA
    J Chem Phys; 2022 Feb; 156(8):084903. PubMed ID: 35232192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalysis by entropic guidance from enzymes.
    Young L; Post CB
    Biochemistry; 1996 Dec; 35(48):15129-33. PubMed ID: 8952459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 15N NMR relaxation studies of free and inhibitor-bound 4-oxalocrotonate tautomerase: backbone dynamics and entropy changes of an enzyme upon inhibitor binding.
    Stivers JT; Abeygunawardana C; Mildvan AS
    Biochemistry; 1996 Dec; 35(50):16036-47. PubMed ID: 8973173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How much do enzymes really gain by restraining their reacting fragments?
    Shurki A; Strajbl M; Villà J; Warshel A
    J Am Chem Soc; 2002 Apr; 124(15):4097-107. PubMed ID: 11942849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes.
    Williams DH; Stephens E; O'Brien DP; Zhou M
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6596-616. PubMed ID: 15593167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropic and surprisingly small intramolecular polarization effects in the mechanism of cyclophilin A.
    Ladani ST; Hamelberg D
    J Phys Chem B; 2012 Sep; 116(35):10771-8. PubMed ID: 22891696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Temperature Dependence of Enzyme-Catalyzed Rates.
    Arcus VL; Prentice EJ; Hobbs JK; Mulholland AJ; Van der Kamp MW; Pudney CR; Parker EJ; Schipper LA
    Biochemistry; 2016 Mar; 55(12):1681-8. PubMed ID: 26881922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Reactions Affected by Medium Reorganization.
    Matyushov DV; Newton MD
    J Phys Chem B; 2018 Dec; 122(51):12302-12311. PubMed ID: 30514079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast sterol C24-methyltransferase: role of highly conserved tyrosine-81 in catalytic competence studied by site-directed mutagenesis and thermodynamic analysis.
    Nes WD; Jayasimha P; Song Z
    Arch Biochem Biophys; 2008 Sep; 477(2):313-23. PubMed ID: 18555004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution.
    Warshel A; Florián J
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5950-5. PubMed ID: 9600897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of translational entropy in molecular associations.
    Siebert X; Amzel LM
    Proteins; 2004 Jan; 54(1):104-15. PubMed ID: 14705027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme-substrate binding.
    Chen D; Li Y; Li X; Hong X; Fan X; Savidge T
    Chem Sci; 2022 Jul; 13(27):8193-8202. PubMed ID: 35919436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.