These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 11050225)

  • 1. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions.
    Michelitsch MD; Weissman JS
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum.
    Singh GP; Chandra BR; Bhattacharya A; Akhouri RR; Singh SK; Sharma A
    Mol Biochem Parasitol; 2004 Oct; 137(2):307-19. PubMed ID: 15383301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth.
    Watzky MA; Morris AM; Ross ED; Finke RG
    Biochemistry; 2008 Oct; 47(40):10790-800. PubMed ID: 18785757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.
    Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S
    Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins.
    Zhang Y; Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes.
    Harrison PM; Gerstein M
    Genome Biol; 2003; 4(6):R40. PubMed ID: 12801414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains.
    Espinosa Angarica V; Ventura S; Sancho J
    BMC Genomics; 2013 May; 14():316. PubMed ID: 23663289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence features governing aggregation or degradation of prion-like proteins.
    Cascarina SM; Paul KR; Machihara S; Ross ED
    PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating new prions by targeted mutation or segment duplication.
    Paul KR; Hendrich CG; Waechter A; Harman MR; Ross ED
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8584-9. PubMed ID: 26100899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition?
    Chernoff YO
    Curr Opin Chem Biol; 2004 Dec; 8(6):665-71. PubMed ID: 15556413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins.
    Ross ED; Maclea KS; Anderson C; Ben-Hur A
    Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of amino acid composition on yeast prion formation and prion domain interactions.
    Ross ED; Toombs JA
    Prion; 2010; 4(2):60-5. PubMed ID: 20495349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid composition predicts prion activity.
    Afsar Minhas FUA; Ross ED; Ben-Hur A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005465. PubMed ID: 28394888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing prion propensity by hydrophobic insertion.
    Gonzalez Nelson AC; Paul KR; Petri M; Flores N; Rogge RA; Cascarina SM; Ross ED
    PLoS One; 2014; 9(2):e89286. PubMed ID: 24586661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.