BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11051078)

  • 1. Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance.
    Evtodienko YV
    Membr Cell Biol; 2000; 14(1):1-17. PubMed ID: 11051078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors.
    Smaili SS; Russell JT
    Cell Calcium; 1999; 26(3-4):121-30. PubMed ID: 10598276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of the non-selective mitochondrial pore in lymphoid cells. 2. Intact rat thymocytes.
    Chernyak BV
    Biochemistry (Mosc); 1999 Aug; 64(8):922-8. PubMed ID: 10498809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport.
    Pokhilko AV; Ataullakhanov FI; Holmuhamedov EL
    J Theor Biol; 2006 Nov; 243(1):152-69. PubMed ID: 16859713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial Na+/Ca2+ exchanger plays a key role in the control of cytosolic Ca2+ oscillations.
    Hernández-SanMiguel E; Vay L; Santo-Domingo J; Lobatón CD; Moreno A; Montero M; Alvarez J
    Cell Calcium; 2006 Jul; 40(1):53-61. PubMed ID: 16720043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+.
    Schild L; Reiser G
    FEBS J; 2005 Jul; 272(14):3593-601. PubMed ID: 16008559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis.
    Takeyama N; Miki S; Hirakawa A; Tanaka T
    Exp Cell Res; 2002 Mar; 274(1):16-24. PubMed ID: 11855853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of intracellular calcium oscillations by mitochondria and gap junctions.
    Zhang BX; Ma X; Shu Z; Yeh CK; Swerdlow RH; Katz MS
    Cell Biochem Biophys; 2006; 44(2):187-203. PubMed ID: 16456221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane.
    Sultan A; Sokolove PM
    Arch Biochem Biophys; 2001 Feb; 386(1):37-51. PubMed ID: 11360999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of nonselective permeability of the inner membrane in deenergized mitochondria.
    Dedov VN; Demin OV; Chernyak VY; Chernyak BV
    Biochemistry (Mosc); 1999 Jul; 64(7):809-16. PubMed ID: 10424906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of mitochondrial Ca(2+)-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria.
    Selivanov VA; Ichas F; Holmuhamedov EL; Jouaville LS; Evtodienko YV; Mazat JP
    Biophys Chem; 1998 May; 72(1-2):111-21. PubMed ID: 9652089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of oxidative phosphorylation in the inner membrane of rat liver mitochondria by calcium ions.
    Evtodienko YV; Azarashvili TS; Teplova VV; Odinokova IV; Saris N
    Biochemistry (Mosc); 2000 Sep; 65(9):1023-6. PubMed ID: 11042493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production.
    Dumollard R; Marangos P; Fitzharris G; Swann K; Duchen M; Carroll J
    Development; 2004 Jul; 131(13):3057-67. PubMed ID: 15163630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial calcium uniporter is a highly selective ion channel.
    Kirichok Y; Krapivinsky G; Clapham DE
    Nature; 2004 Jan; 427(6972):360-4. PubMed ID: 14737170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury.
    Zhu WZ; Xie Y; Chen L; Yang HT; Zhou ZN
    J Mol Cell Cardiol; 2006 Jan; 40(1):96-106. PubMed ID: 16288778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes.
    Kahlert S; Schönfeld P; Reiser G
    Neurobiol Dis; 2005 Feb; 18(1):110-8. PubMed ID: 15649701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Membrane-bound Ca2+ in the mitochondria of Ehrlich ascitic tumor cells].
    Zinchenko VP; Teplova VV; Evtodienko IuV
    Biull Eksp Biol Med; 1985 Nov; 100(11):563-6. PubMed ID: 4063504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRYAB and HSPB2 deficiency increases myocyte mitochondrial permeability transition and mitochondrial calcium uptake.
    Kadono T; Zhang XQ; Srinivasan S; Ishida H; Barry WH; Benjamin IJ
    J Mol Cell Cardiol; 2006 Jun; 40(6):783-9. PubMed ID: 16678848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes.
    Jou MJ; Peng TI; Reiter RJ; Jou SB; Wu HY; Wen ST
    J Pineal Res; 2004 Aug; 37(1):55-70. PubMed ID: 15230869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.