BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11051112)

  • 1. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease severity declines over time after a wild boar population has been affected by classical swine fever--legend or actual epidemiological process?
    Lange M; Kramer-Schadt S; Blome S; Beer M; Thulke HH
    Prev Vet Med; 2012 Sep; 106(2):185-95. PubMed ID: 22361000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of viraemia- and clinical-based estimates of within- and between-pen transmission of classical swine fever virus from three transmission experiments.
    Durand B; Davila S; Cariolet R; Mesplède A; Le Potier MF
    Vet Microbiol; 2009 Mar; 135(3-4):196-204. PubMed ID: 18986777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using mortality data for early detection of Classical Swine Fever in The Netherlands.
    Backer JA; Brouwer H; van Schaik G; van Roermund HJ
    Prev Vet Med; 2011 Apr; 99(1):38-47. PubMed ID: 21081252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical swine fever (CSF) in wild boar: the role of the transplacental infection in the perpetuation of CSF.
    Kaden V; Steyer H; Schnabel J; Bruer W
    J Vet Med B Infect Dis Vet Public Health; 2005 May; 52(4):161-4. PubMed ID: 16000110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT; Garske T; Ghani AC; Clarke PS
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of classical swine fever virus within herds during the 1997-1998 epidemic in The Netherlands.
    Stegeman A; Elbers AR; Bouma A; de Smit H; de Jong MC
    Prev Vet Med; 1999 Dec; 42(3-4):201-18. PubMed ID: 10619156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation and inference of R0 of an infectious pathogen by a removal method.
    Ferrari MJ; Bjørnstad ON; Dobson AP
    Math Biosci; 2005 Nov; 198(1):14-26. PubMed ID: 16216286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis to evaluate the impact of uncertain factors in a scenario tree model for classical swine fever introduction.
    de Vos CJ; Saatkamp HW; Nielen M; Huirne RB
    Risk Anal; 2006 Oct; 26(5):1311-22. PubMed ID: 17054533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The local threshold for geographical spread of infectious diseases between farms.
    Boender GJ; Meester R; Gies E; De Jong MC
    Prev Vet Med; 2007 Nov; 82(1-2):90-101. PubMed ID: 17602765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach to model monitoring and surveillance data of wildlife diseases-exemplified by Classical Swine Fever in wild boar.
    Stahnke N; Liebscher V; Staubach C; Ziller M
    Prev Vet Med; 2013 Nov; 112(3-4):355-69. PubMed ID: 24008002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive-multiplicative regression models for spatio-temporal epidemics.
    Höhle M
    Biom J; 2009 Dec; 51(6):961-78. PubMed ID: 20029897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality.
    Kirupaharan N; Allen LJ
    Bull Math Biol; 2004 Jul; 66(4):841-64. PubMed ID: 15210322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter estimation and uncertainty quantification for an epidemic model.
    Capaldi A; Behrend S; Berman B; Smith J; Wright J; Lloyd AL
    Math Biosci Eng; 2012 Jul; 9(3):553-76. PubMed ID: 22881026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical epidemic modeling with hospital outbreak data.
    Wolkewitz M; Dettenkofer M; Bertz H; Schumacher M; Huebner J
    Stat Med; 2008 Dec; 27(30):6522-31. PubMed ID: 18759371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda.
    Chowell G; Hengartner NW; Castillo-Chavez C; Fenimore PW; Hyman JM
    J Theor Biol; 2004 Jul; 229(1):119-26. PubMed ID: 15178190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.