These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11051112)

  • 21. Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
    Lekone PE; Finkenstädt BF
    Biometrics; 2006 Dec; 62(4):1170-7. PubMed ID: 17156292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection.
    Massad E; Coutinho FA; Burattini MN; Amaku M
    Trop Med Int Health; 2010 Jan; 15(1):120-6. PubMed ID: 19891761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997-1998 classical swine fever epidemic in The Netherlands. I. Description of simulation model.
    Jalvingh AW; Nielen M; Maurice H; Stegeman AJ; Elbers AR; Dijkhuizen AA
    Prev Vet Med; 1999 Dec; 42(3-4):271-95. PubMed ID: 10619160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic reproduction ratio.
    Gulenkin VM; Korennoy FI; Karaulov AK; Dudnikov SA
    Prev Vet Med; 2011 Dec; 102(3):167-74. PubMed ID: 21840611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.
    Yan P
    J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential impact of an introduction of foot-and-mouth disease into the California State Fair.
    Carpenter TE; Christiansen LE; Dickey BF; Thunes C; Hullinger PJ
    J Am Vet Med Assoc; 2007 Oct; 231(8):1231-5. PubMed ID: 17937554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Situation of classical swine fever and the epidemiologic and ecologic aspects affecting its distribution in the American continent.
    Vargas Terán M; Calcagno Ferrat N; Lubroth J
    Ann N Y Acad Sci; 2004 Oct; 1026():54-64. PubMed ID: 15604470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network epidemic models with two levels of mixing.
    Ball F; Neal P
    Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effectiveness of classical swine fever surveillance programmes in The Netherlands.
    Klinkenberg D; Nielen M; Mourits MC; de Jong MC
    Prev Vet Med; 2005 Jan; 67(1):19-37. PubMed ID: 15698906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scenario tree modeling to analyze the probability of classical swine fever virus introduction into member states of the European Union.
    de Vos CJ; Saatkamp HW; Nielen M; Huirne RB
    Risk Anal; 2004 Feb; 24(1):237-53. PubMed ID: 15028015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A discrete-time communicable disease model with a stochastic contact rate for nonhomogeneous populations.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():77-88. PubMed ID: 2065180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal treatment of an SIR epidemic model with time delay.
    Zaman G; Kang YH; Jung IH
    Biosystems; 2009 Oct; 98(1):43-50. PubMed ID: 19464340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.
    Tanner MW; Sattenspiel L; Ntaimo L
    Math Biosci; 2008 Oct; 215(2):144-51. PubMed ID: 18700149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity analysis to identify key parameters influencing Salmonella infection dynamics in a pig batch.
    Lurette A; Touzeau S; Lamboni M; Monod H
    J Theor Biol; 2009 May; 258(1):43-52. PubMed ID: 19490864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The 1997-1998 classical swine fever epidemic in The Netherlands--a survival analysis.
    Benard HJ; Stärk KD; Morris RS; Pfeiffer DU; Moser H
    Prev Vet Med; 1999 Dec; 42(3-4):235-48. PubMed ID: 10619158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997-1998 classical swine fever epidemic in The Netherlands. II. Comparison of control strategies.
    Nielen M; Jalvingh AW; Meuwissen MP; Horst SH; Dijkhuizen AA
    Prev Vet Med; 1999 Dec; 42(3-4):297-317. PubMed ID: 10619161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of the basic reproductive number (R0) for epidemic, highly pathogenic avian influenza subtype H5N1 spread.
    Ward MP; Maftei D; Apostu C; Suru A
    Epidemiol Infect; 2009 Feb; 137(2):219-26. PubMed ID: 18559127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of classical swine fever virus in aerosols originating from pigs infected with strains of high, moderate or low virulence.
    Weesendorp E; Stegeman A; Loeffen WL
    Vet Microbiol; 2009 Mar; 135(3-4):222-30. PubMed ID: 19013029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of the dynamics and rate of transmission of classical swine fever (hog cholera) in wild pigs.
    Hone J; Pech R; Yip P
    Epidemiol Infect; 1992 Apr; 108(2):377-86. PubMed ID: 1582476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.