These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11051112)

  • 41. Estimating the immunity coverage required to prevent epidemics in a community of households.
    Britton T; Becker NG
    Biostatistics; 2000 Dec; 1(4):389-402. PubMed ID: 12933563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Within-farm spread of classical swine fever virus--a blueprint for a stochastic simulation model.
    Stärk KD; Pfeiffer DU; Morris RS
    Vet Q; 2000 Jan; 22(1):36-43. PubMed ID: 10682386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The parasite capacity of the host population].
    Kozminskiĭ EV
    Parazitologiia; 2002; 36(1):48-59. PubMed ID: 11965643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Current malaria situation in the Republic of Kazakhstan].
    Bismil'din FB; Shapieva ZhZh; Anpilova EN
    Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection and quantification of classical swine fever virus in air samples originating from infected pigs and experimentally produced aerosols.
    Weesendorp E; Landman WJ; Stegeman A; Loeffen WL
    Vet Microbiol; 2008 Feb; 127(1-2):50-62. PubMed ID: 17869455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estimating HIV incidence rates from age prevalence data in epidemic situations.
    Williams B; Gouws E; Wilkinson D; Karim SA
    Stat Med; 2001 Jul; 20(13):2003-16. PubMed ID: 11427956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Classic swine fever epidemic in the Netherlands 1997-1998].
    Bouma A
    Tijdschr Diergeneeskd; 2000 Apr; 125(7):228-30. PubMed ID: 10896616
    [No Abstract]   [Full Text] [Related]  

  • 48. Nonhomogeneous birth and death models for epidemic outbreak data.
    van den Broek J; Heesterbeek H
    Biostatistics; 2007 Apr; 8(2):453-67. PubMed ID: 16957056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An analysis of the Milwaukee cryptosporidiosis outbreak based on a dynamic model of the infection process.
    Eisenberg JN; Seto EY; Colford JM; Olivieri A; Spear RC
    Epidemiology; 1998 May; 9(3):255-63. PubMed ID: 9583416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A branching model for the spread of infectious animal diseases in varying environments.
    Trapman P; Meester R; Heesterbeek H
    J Math Biol; 2004 Dec; 49(6):553-76. PubMed ID: 15565446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantifying the intrinsic transmission dynamics of tuberculosis.
    Porco TC; Blower SM
    Theor Popul Biol; 1998 Oct; 54(2):117-32. PubMed ID: 9733654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulated financial losses of classical swine fever epidemics in the Finnish pig production sector.
    Niemi JK; Lehtonen H; Pietola K; Lyytikäinen T; Raulo S
    Prev Vet Med; 2008 May; 84(3-4):194-212. PubMed ID: 18207589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implementation and validation of an economic module in the Be-FAST model to predict costs generated by livestock disease epidemics: Application to classical swine fever epidemics in Spain.
    Fernández-Carrión E; Ivorra B; Martínez-López B; Ramos AM; Sánchez-Vizcaíno JM
    Prev Vet Med; 2016 Apr; 126():66-73. PubMed ID: 26875754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows.
    Orsel K; Bouma A; Dekker A; Stegeman JA; de Jong MC
    Prev Vet Med; 2009 Feb; 88(2):158-63. PubMed ID: 18929417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimating the rate constants in a two-compartment stochastic model.
    Kodell RL; Matis JH
    Biometrics; 1976 Jun; 32(2):377-90. PubMed ID: 953135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Terminal distributions along a 'knight's line' for a stochastic epidemic.
    Griffiths JD; Smedley JK; Weale TG
    IMA J Math Appl Med Biol; 1987; 4(1):69-79. PubMed ID: 3503088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time variations in the generation time of an infectious disease: implications for sampling to appropriately quantify transmission potential.
    Nishiura H
    Math Biosci Eng; 2010 Oct; 7(4):851-69. PubMed ID: 21077712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of seasonal variation patterns on recurrent outbreaks in epidemic models.
    Tanaka G; Aihara K
    J Theor Biol; 2013 Jan; 317():87-95. PubMed ID: 23041433
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation for an epidemic model.
    Becker N
    Biometrics; 1976 Dec; 32(4):769-77. PubMed ID: 1009226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extinction times and phase transitions for spatially structured closed epidemics.
    Swinton J
    Bull Math Biol; 1998 Mar; 60(2):215-30. PubMed ID: 9559576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.