These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11051479)

  • 1. Condensation in a steady-flow thermoacoustic refrigerator.
    Hiller RA; Swift GW
    J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of forming mechanism and influencing factors of thermoacoustic plate end temperature difference.
    Wang J; Liu X; Meng N
    Sci Rep; 2024 Sep; 14(1):21219. PubMed ID: 39261493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on heat transfer law of moving temperature variable gas in thermoacoustic plate stack.
    Wang J; Liu X
    Sci Rep; 2024 Apr; 14(1):9486. PubMed ID: 38664526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traveling wave thermoacoustic refrigeration with variable phase-coordinated boundary conditions.
    Callanan J; Adlakha R; Mousa M; Nouh M
    J Acoust Soc Am; 2023 Dec; 154(6):3943-3954. PubMed ID: 38147018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aeroacoustically driven thermoacoustic heat pump.
    Slaton WV; Zeegers JC
    J Acoust Soc Am; 2005 Jun; 117(6):3628-35. PubMed ID: 16018466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigations of flow and energy fields near a thermoacoustic couple.
    Ishikawa H; Mee DJ
    J Acoust Soc Am; 2002 Feb; 111(2):831-9. PubMed ID: 11863185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices.
    Mironov M; Gusev V; Auregan Y; Lotton P; Bruneau M; Piatakov P
    J Acoust Soc Am; 2002 Aug; 112(2):441-5. PubMed ID: 12186024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
    Yasui K; Izu N
    J Acoust Soc Am; 2017 Jun; 141(6):4398. PubMed ID: 28618792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoacoustics with idealized heat exchangers and no stack.
    Wakeland RS; Keolian RM
    J Acoust Soc Am; 2002 Jun; 111(6):2654-64. PubMed ID: 12083198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optimal stack spacing for thermoacoustic refrigeration.
    Tijani ME; Zeegers JC; de Waele AT
    J Acoust Soc Am; 2002 Jul; 112(1):128-33. PubMed ID: 12141337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonperiodicity of the flow within the gap of a thermoacoustic couple at high amplitudes.
    Berson A; Blanc-Benon P
    J Acoust Soc Am; 2007 Oct; 122(4):EL122-7. PubMed ID: 17902740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.