These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 11051761)
41. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Cabrita LD; Cassaignau AME; Launay HMM; Waudby CA; Wlodarski T; Camilloni C; Karyadi ME; Robertson AL; Wang X; Wentink AS; Goodsell L; Woolhead CA; Vendruscolo M; Dobson CM; Christodoulou J Nat Struct Mol Biol; 2016 Apr; 23(4):278-285. PubMed ID: 26926436 [TBL] [Abstract][Full Text] [Related]
42. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Diamant S; Goloubinoff P Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681 [TBL] [Abstract][Full Text] [Related]
43. Different conformations of nascent peptides on ribosomes. Tsalkova T; Odom OW; Kramer G; Hardesty B J Mol Biol; 1998 May; 278(4):713-23. PubMed ID: 9614937 [TBL] [Abstract][Full Text] [Related]
44. Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Vandenbroeck K; Billiau A Biochimie; 1998; 80(8-9):729-37. PubMed ID: 9865495 [TBL] [Abstract][Full Text] [Related]
45. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Gabashvili IS; Gregory ST; Valle M; Grassucci R; Worbs M; Wahl MC; Dahlberg AE; Frank J Mol Cell; 2001 Jul; 8(1):181-8. PubMed ID: 11511371 [TBL] [Abstract][Full Text] [Related]
46. Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding. Chen Y; Tsai B; Li N; Gao N Nat Commun; 2022 Jun; 13(1):3410. PubMed ID: 35701497 [TBL] [Abstract][Full Text] [Related]
47. Chaperone-assisted protein folding in the cell cytoplasm. Houry WA Curr Protein Pept Sci; 2001 Sep; 2(3):227-44. PubMed ID: 12369934 [TBL] [Abstract][Full Text] [Related]
49. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Farías-Rico JA; Ruud Selin F; Myronidi I; Frühauf M; von Heijne G Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9280-E9287. PubMed ID: 30224455 [TBL] [Abstract][Full Text] [Related]
50. Cotranslational protein folding on the ribosome monitored in real time. Holtkamp W; Kokic G; Jäger M; Mittelstaet J; Komar AA; Rodnina MV Science; 2015 Nov; 350(6264):1104-7. PubMed ID: 26612953 [TBL] [Abstract][Full Text] [Related]
51. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Jenni S; Ban N Curr Opin Struct Biol; 2003 Apr; 13(2):212-9. PubMed ID: 12727515 [TBL] [Abstract][Full Text] [Related]
52. How the ribosome shapes cotranslational protein folding. Samatova E; Komar AA; Rodnina MV Curr Opin Struct Biol; 2024 Feb; 84():102740. PubMed ID: 38071940 [TBL] [Abstract][Full Text] [Related]
53. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. Koplin A; Preissler S; Ilina Y; Koch M; Scior A; Erhardt M; Deuerling E J Cell Biol; 2010 Apr; 189(1):57-68. PubMed ID: 20368618 [TBL] [Abstract][Full Text] [Related]
56. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Kramer G; Boehringer D; Ban N; Bukau B Nat Struct Mol Biol; 2009 Jun; 16(6):589-97. PubMed ID: 19491936 [TBL] [Abstract][Full Text] [Related]