These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 11052506)
1. Effect of in vitro testing over extended periods on the low-load mechanical behaviour of dense connective tissues. King GJ; Pillon CL; Johnson JA J Orthop Res; 2000 Jul; 18(4):678-81. PubMed ID: 11052506 [TBL] [Abstract][Full Text] [Related]
2. Intraoperative graft tensioning alters viscoelastic but not failure behaviours of rabbit medial collateral ligament autografts. King GJ; Edwards P; Brant RF; Shrive NG; Frank CB J Orthop Res; 1995 Nov; 13(6):915-22. PubMed ID: 8544029 [TBL] [Abstract][Full Text] [Related]
3. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. Thornton GM; Oliynyk A; Frank CB; Shrive NG J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592 [TBL] [Abstract][Full Text] [Related]
4. Immobilization increases the vulnerability of rabbit medial collateral ligament autografts to creep. Boorman RS; Shrive NG; Frank CB J Orthop Res; 1998 Nov; 16(6):682-9. PubMed ID: 9877392 [TBL] [Abstract][Full Text] [Related]
6. Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Griffith CJ; Wijdicks CA; LaPrade RF; Armitage BM; Johansen S; Engebretsen L Am J Sports Med; 2009 Jan; 37(1):140-8. PubMed ID: 18725650 [TBL] [Abstract][Full Text] [Related]
7. Structural properties of the medial collateral ligament complex of the human knee. Robinson JR; Bull AM; Amis AA J Biomech; 2005 May; 38(5):1067-74. PubMed ID: 15797588 [TBL] [Abstract][Full Text] [Related]
8. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits. Musahl V; Abramowitch SD; Gilbert TW; Tsuda E; Wang JH; Badylak SF; Woo SL J Orthop Res; 2004 Jan; 22(1):214-20. PubMed ID: 14656683 [TBL] [Abstract][Full Text] [Related]
9. Medial collateral ligament injuries and subsequent load on the anterior cruciate ligament: a biomechanical evaluation in a cadaveric model. Battaglia MJ; Lenhoff MW; Ehteshami JR; Lyman S; Provencher MT; Wickiewicz TL; Warren RF Am J Sports Med; 2009 Feb; 37(2):305-11. PubMed ID: 19098154 [TBL] [Abstract][Full Text] [Related]
10. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. Ellis BJ; Lujan TJ; Dalton MS; Weiss JA J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656 [TBL] [Abstract][Full Text] [Related]
11. Does a tensioning device pinned to the tibia improve knee anterior-posterior load-displacement compared to manual tensioning of the graft following anterior cruciate ligament reconstruction? A cadaveric study of two tibial fixation devices. Thompson DM; Hull ML; Howell SM J Orthop Res; 2006 Sep; 24(9):1832-41. PubMed ID: 16865723 [TBL] [Abstract][Full Text] [Related]
12. The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. Abramowitch SD; Papageorgiou CD; Withrow JD; Gilbert TW; Woo SL J Orthop Res; 2003 Jul; 21(4):708-15. PubMed ID: 12798072 [TBL] [Abstract][Full Text] [Related]
13. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. Thornton GM; Shrive NG; Frank CB J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961 [TBL] [Abstract][Full Text] [Related]
14. The effects of refreezing on the viscoelastic and tensile properties of ligaments. Moon DK; Woo SL; Takakura Y; Gabriel MT; Abramowitch SD J Biomech; 2006; 39(6):1153-7. PubMed ID: 16549103 [TBL] [Abstract][Full Text] [Related]
15. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments. Germscheid NM; Thornton GM; Hart DA; Hildebrand KA J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965 [TBL] [Abstract][Full Text] [Related]
16. Dynamic in vitro measurement of posterior cruciate ligament load and tibiofemoral stress after TKA in dependence on tibiofemoral slope. Ostermeier S; Schlomach C; Hurschler C; Windhagen H; Stukenborg-Colsman C Clin Biomech (Bristol); 2006 Jun; 21(5):525-32. PubMed ID: 16494980 [TBL] [Abstract][Full Text] [Related]
17. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress. Thornton GM; Schwab TD; Oxland TR Clin Biomech (Bristol); 2007 Oct; 22(8):932-40. PubMed ID: 17602807 [TBL] [Abstract][Full Text] [Related]
18. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Agneskirchner JD; Hurschler C; Wrann CD; Lobenhoffer P Arthroscopy; 2007 Aug; 23(8):852-61. PubMed ID: 17681207 [TBL] [Abstract][Full Text] [Related]
19. Altering ligament water content affects ligament pre-stress and creep behaviour. Thornton GM; Shrive NG; Frank CB J Orthop Res; 2001 Sep; 19(5):845-51. PubMed ID: 11562131 [TBL] [Abstract][Full Text] [Related]
20. The symmetry of the medial collateral and anterior cruciate ligament properties: a biochemical study in the rat hind limb. Yiannakopoulos CK; Kanellopoulos AD; Dontas IA; Trovas G; Korres DS; Lyritis GP J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):170-3. PubMed ID: 15951634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]