These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 11052538)
1. Fast and fuel efficient? Optimal use of wind by flying albatrosses. Weimerskirch H; Guionnet T; Martin J; Shaffer SA; Costa DP Proc Biol Sci; 2000 Sep; 267(1455):1869-74. PubMed ID: 11052538 [TBL] [Abstract][Full Text] [Related]
2. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle. Uesaka L; Goto Y; Naruoka M; Weimerskirch H; Sato K; Sakamoto KQ Elife; 2023 Oct; 12():. PubMed ID: 37814539 [TBL] [Abstract][Full Text] [Related]
3. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird. Clay TA; Joo R; Weimerskirch H; Phillips RA; den Ouden O; Basille M; Clusella-Trullas S; Assink JD; Patrick SC J Anim Ecol; 2020 Aug; 89(8):1811-1823. PubMed ID: 32557603 [TBL] [Abstract][Full Text] [Related]
4. Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses. Sakamoto KQ; Takahashi A; Iwata T; Yamamoto T; Yamamoto M; Trathan PN J Exp Biol; 2013 Aug; 216(Pt 16):3175-82. PubMed ID: 23661772 [TBL] [Abstract][Full Text] [Related]
5. Flight speed and performance of the wandering albatross with respect to wind. Richardson PL; Wakefield ED; Phillips RA Mov Ecol; 2018; 6():3. PubMed ID: 29556395 [TBL] [Abstract][Full Text] [Related]
6. Experimental verification of dynamic soaring in albatrosses. Sachs G; Traugott J; Nesterova AP; Bonadonna F J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888 [TBL] [Abstract][Full Text] [Related]
7. Heart rate and energy expenditure of incubating wandering albatrosses: basal levels, natural variation, and the effects of human disturbance. Weimerskirch H; Shaffer SA; Mabille G; Martin J; Boutard O; Rouanet JL J Exp Biol; 2002 Feb; 205(Pt 4):475-83. PubMed ID: 11893761 [TBL] [Abstract][Full Text] [Related]
8. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses. Sachs G; Traugott J; Nesterova AP; Dell'Omo G; Kümmeth F; Heidrich W; Vyssotski AL; Bonadonna F PLoS One; 2012; 7(9):e41449. PubMed ID: 22957014 [TBL] [Abstract][Full Text] [Related]
9. Albatrosses employ orientation and routing strategies similar to yacht racers. Goto Y; Weimerskirch H; Fukaya K; Yoda K; Naruoka M; Sato K Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2312851121. PubMed ID: 38771864 [TBL] [Abstract][Full Text] [Related]
10. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses. Suryan RM; Anderson DJ; Shaffer SA; Roby DD; Tremblay Y; Costa DP; Sievert PR; Sato F; Ozaki K; Balogh GR; Nakamura N PLoS One; 2008; 3(12):e4016. PubMed ID: 19107200 [TBL] [Abstract][Full Text] [Related]
11. Windscape and tortuosity shape the flight costs of northern gannets. Amélineau F; Péron C; Lescroël A; Authier M; Provost P; Grémillet D J Exp Biol; 2014 Mar; 217(Pt 6):876-85. PubMed ID: 24622894 [TBL] [Abstract][Full Text] [Related]
12. European shags optimize their flight behavior according to wind conditions. Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559 [TBL] [Abstract][Full Text] [Related]
13. Evidence for olfactory search in wandering albatross, Diomedea exulans. Nevitt GA; Losekoot M; Weimerskirch H Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4576-81. PubMed ID: 18326025 [TBL] [Abstract][Full Text] [Related]
14. Changes in wind pattern alter albatross distribution and life-history traits. Weimerskirch H; Louzao M; de Grissac S; Delord K Science; 2012 Jan; 335(6065):211-4. PubMed ID: 22246774 [TBL] [Abstract][Full Text] [Related]
15. Flight dynamics of Cory's shearwater foraging in a coastal environment. Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697 [TBL] [Abstract][Full Text] [Related]
16. Observations and models of across-wind flight speed of the wandering albatross. Richardson PL; Wakefield ED R Soc Open Sci; 2022 Nov; 9(11):211364. PubMed ID: 36465680 [TBL] [Abstract][Full Text] [Related]
17. Evidence for sex-segregated ocean distributions of first-winter wandering albatrosses at Crozet islands. Åkesson S; Weimerskirch H PLoS One; 2014; 9(2):e86779. PubMed ID: 24586254 [TBL] [Abstract][Full Text] [Related]
18. Boldness predicts plasticity in flight responses to winds. Gillies N; Weimerskirch H; Thorley J; Clay TA; Martín López LM; Joo R; Basille M; Patrick SC J Anim Ecol; 2023 Sep; 92(9):1730-1742. PubMed ID: 37365766 [TBL] [Abstract][Full Text] [Related]
19. Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses. Cornioley T; Börger L; Ozgul A; Weimerskirch H J Anim Ecol; 2016 Sep; 85(5):1318-27. PubMed ID: 27187714 [TBL] [Abstract][Full Text] [Related]
20. Seabird morphology determines operational wind speeds, tolerable maxima, and responses to extremes. Nourani E; Safi K; de Grissac S; Anderson DJ; Cole NC; Fell A; Grémillet D; Lempidakis E; Lerma M; McKee JL; Pichegru L; Provost P; Rattenborg NC; Ryan PG; Santos CD; Schoombie S; Tatayah V; Weimerskirch H; Wikelski M; Shepard ELC Curr Biol; 2023 Mar; 33(6):1179-1184.e3. PubMed ID: 36827987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]