BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11052545)

  • 1. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics.
    van Netten SM; Kros CJ
    Proc Biol Sci; 2000 Sep; 267(1455):1915-23. PubMed ID: 11052545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice.
    Géléoc GS; Lennan GW; Richardson GP; Kros CJ
    Proc Biol Sci; 1997 Apr; 264(1381):611-21. PubMed ID: 9149428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
    Beurg M; Nam JH; Crawford A; Fettiplace R
    Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of active hair bundle motion in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2002 Jan; 22(1):44-52. PubMed ID: 11756487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
    Bormuth V; Barral J; Joanny JF; Jülicher F; Martin P
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7185-90. PubMed ID: 24799674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    J Neurosci; 2016 Jan; 36(2):336-49. PubMed ID: 26758827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells.
    Goldring AC; Beurg M; Fettiplace R
    J Physiol; 2019 Dec; 597(24):5949-5961. PubMed ID: 31633194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells.
    Corns LF; Johnson SL; Kros CJ; Marcotti W
    Proc Natl Acad Sci U S A; 2014 Oct; 111(41):14918-23. PubMed ID: 25228765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
    Choe Y; Magnasco MO; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15321-6. PubMed ID: 9860967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gating of two mechanoelectrical transducer channels associated with a single tip link.
    Sul B; Iwasa KH
    Biophys J; 2010 Aug; 99(4):1027-33. PubMed ID: 20712985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ.
    Holt JR; Corey DP; Eatock RA
    J Neurosci; 1997 Nov; 17(22):8739-48. PubMed ID: 9348343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells.
    Ricci AJ; Crawford AC; Fettiplace R
    J Neurosci; 2000 Oct; 20(19):7131-42. PubMed ID: 11007868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model.
    Nam JH; Cotton JR; Grant W
    Biophys J; 2007 Mar; 92(6):1918-28. PubMed ID: 17208975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea.
    Quiñones PM; Meenderink SWF; Applegate BE; Oghalai JS
    Hear Res; 2022 Sep; 423():108473. PubMed ID: 35287989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea.
    Kros CJ; Rüsch A; Richardson GP
    Proc Biol Sci; 1992 Aug; 249(1325):185-93. PubMed ID: 1280836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle.
    Jaramillo F; Hudspeth AJ
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1330-4. PubMed ID: 7679501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ changes the force sensitivity of the hair-cell transduction channel.
    Cheung EL; Corey DP
    Biophys J; 2006 Jan; 90(1):124-39. PubMed ID: 16214875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic mechanosensitivity of outer hair cells after loss of tip links.
    Meyer J; Preyer S; Hofmann SI; Gummer AW
    Hear Res; 2005 Apr; 202(1-2):97-113. PubMed ID: 15811703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear mechanical responses of mouse cochlear hair bundles.
    Russell IJ; Kössl M; Richardson GP
    Proc Biol Sci; 1992 Dec; 250(1329):217-27. PubMed ID: 1362990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation and adaptation of transducer currents in turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1989 Dec; 419():405-34. PubMed ID: 2621635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.