These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11052753)

  • 1. Early structural changes in myosin rod upon heating of carp myofibrils.
    Konno K; Yamamoto T; Takahashi M; Kato S
    J Agric Food Chem; 2000 Oct; 48(10):4905-9. PubMed ID: 11052753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniquely stable 40 kDa subfragment-2 in carp myosin.
    Takahashi TT; Takahashi M; Konno K
    J Agric Food Chem; 2005 Mar; 53(6):2242-7. PubMed ID: 15769163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease-susceptible sites and properties of fragments of aortic smooth-muscle myosin.
    King L; Jiang MJ; Huang TS; Sheu GC
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):511-8. PubMed ID: 8526864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of neck region in the thermal aggregation of myosin.
    Tazawa T; Kato S; Katoh T; Konno K
    J Agric Food Chem; 2002 Jan; 50(1):196-202. PubMed ID: 11754567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast skeletal myosin isoforms in thermally acclimated carp.
    Watabe S; Hwang GC; Nakaya M; Guo XF; Okamoto Y
    J Biochem; 1992 Jan; 111(1):113-22. PubMed ID: 1535074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptic digestion of rabbit skeletal myofibrils: an enzymatic probe of myosin cross-bridges.
    Chen T; Reisler E
    Biochemistry; 1984 May; 23(11):2400-7. PubMed ID: 6477873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of myosin subfragment-1 of summer and winter silver carp (Hypophthalmichthys molitrix) muscle.
    Zheng L; Yu K; Yuan C; Wang X; Chen S; Kimura I; Konno K
    J Food Sci; 2012 Sep; 77(9):C914-20. PubMed ID: 22900620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal denaturation of tilapia myosin and its subunits as affected by constantly increasing temperature.
    Reed ZH; Guilford W; Park JW
    J Food Sci; 2011 Sep; 76(7):C1018-24. PubMed ID: 22417538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of ascorbic acid on a myosin molecule derived from carp.
    Ikeuci S; Miyamoto Y; Katoh T; Nishimura K
    Biosci Biotechnol Biochem; 2007 Aug; 71(8):2091-4. PubMed ID: 17690444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stability of myosin rod from silver carp as affected by season.
    Yuan C; Wang X; Chen S; Qu Y; Konno K
    J Food Sci; 2011; 76(5):C686-93. PubMed ID: 22417413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking of contractile proteins from skeletal muscle by treatment with microbial transglutaminase.
    Huang YP; Seguro K; Motoki M; Tawada K
    J Biochem; 1992 Aug; 112(2):229-34. PubMed ID: 1356972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filament-forming domain of carp dorsal myosin rod.
    Kato S; Konno K
    J Biochem; 1993 Jan; 113(1):43-7. PubMed ID: 8454573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium adenosine 5'-diphosphate influences proteolytic susceptibility of myosin in myofibrils.
    Borejdo J
    Biochemistry; 1982 Jan; 21(2):234-41. PubMed ID: 7041959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of magnesium binding to myosin in controlling the state of cross-bridges in skeletal rabbit muscle.
    Reisler E; Liu J; Cheung P
    Biochemistry; 1983 Oct; 22(21):4954-60. PubMed ID: 6685530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between biochemical properties and adaptive diversity of skeletal muscle myofibrils and myosin of some air-breathing teleosts.
    Ahmad R; Hasnain AU
    Indian J Biochem Biophys; 2006 Aug; 43(4):217-25. PubMed ID: 17133765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2.
    Lopez-Lacomba JL; Guzman M; Cortijo M; Mateo PL; Aguirre R; Harvey SC; Cheung HC
    Biopolymers; 1989 Dec; 28(12):2143-59. PubMed ID: 2690963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of filament-forming ability of myosin by non-enzymatic glycosylation and its molecular mechanism.
    Katayama S; Haga Y; Saeki H
    FEBS Lett; 2004 Sep; 575(1-3):9-13. PubMed ID: 15388325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of myofibrillar adenosine triphosphatase activity and liberation of actin from myofibrils upon heating chicken breast meat.
    Matsuishi M; Eda Y; Saito E; Yamamoto S; Kanamori K; Goto Y; Kobayashi Y; Okitani A
    Anim Sci J; 2018 Mar; 89(3):597-605. PubMed ID: 29214693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophysical characterization of tilapia myosin and its subfragments.
    Reed ZH; Park JW
    J Food Sci; 2011 Sep; 76(7):C1050-5. PubMed ID: 22417542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical susceptibility of myosin in chicken myofibrils subjected to hydroxyl radical oxidizing systems.
    Ooizumi T; Xiong YL
    J Agric Food Chem; 2004 Jun; 52(13):4303-7. PubMed ID: 15212484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.