These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11052941)

  • 41. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats.
    Bentley KT; Schindler DE; Cline TJ; Armstrong JB; Macias D; Ciepiela LR; Hilborn R
    J Anim Ecol; 2014 Nov; 83(6):1478-89. PubMed ID: 24702169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alder, Nitrogen, and Lake Ecology: Terrestrial-Aquatic Linkages in the Postglacial History of Lone Spruce Pond, Southwestern Alaska.
    Perren BB; Axford Y; Kaufman DS
    PLoS One; 2017; 12(1):e0169106. PubMed ID: 28076393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts.
    Price MH; Connors BM
    PLoS One; 2014; 9(4):e95718. PubMed ID: 24760007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.
    Fellman JB; Hood E; Dryer W; Pyare S
    PLoS One; 2015; 10(7):e0132652. PubMed ID: 26222506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Population diversity and the portfolio effect in an exploited species.
    Schindler DE; Hilborn R; Chasco B; Boatright CP; Quinn TP; Rogers LA; Webster MS
    Nature; 2010 Jun; 465(7298):609-12. PubMed ID: 20520713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem.
    Springer AM; van Vliet GB; Bool N; Crowley M; Fullagar P; Lea MA; Monash R; Price C; Vertigan C; Woehler EJ
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5038-E5045. PubMed ID: 29760093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Marine trophic diversity in an anadromous fish is linked to its life-history variation in fresh water.
    Johnson SP; Schindler DE
    Biol Lett; 2013 Feb; 9(1):20120824. PubMed ID: 23173190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocomplexity and fisheries sustainability.
    Hilborn R; Quinn TP; Schindler DE; Rogers DE
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6564-8. PubMed ID: 12743372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Marine and freshwater regime changes impact a community of migratory Pacific salmonids in decline.
    Wilson KL; Bailey CJ; Davies TD; Moore JW
    Glob Chang Biol; 2022 Jan; 28(1):72-85. PubMed ID: 34669231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America.
    Malick MJ; Cox SP
    PLoS One; 2016; 11(1):e0146009. PubMed ID: 26760510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological mechanism of homing migration in Pacific salmon from behavioral to molecular biological approaches.
    Ueda H
    Gen Comp Endocrinol; 2011 Jan; 170(2):222-32. PubMed ID: 20144612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.
    Sloat MR; Reeves GH; Christiansen KR
    Glob Chang Biol; 2017 Feb; 23(2):604-620. PubMed ID: 27611839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.
    Haigh R; Ianson D; Holt CA; Neate HE; Edwards AM
    PLoS One; 2015; 10(2):e0117533. PubMed ID: 25671596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linking climate change projections for an Alaskan watershed to future coho salmon production.
    Leppi JC; Rinella DJ; Wilson RR; Loya WM
    Glob Chang Biol; 2014 Jun; 20(6):1808-20. PubMed ID: 24323577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glacier Retreat and Pacific Salmon.
    Pitman KJ; Moore JW; Sloat MR; Beaudreau AH; Bidlack AL; Brenner RE; Hood EW; Pess GR; Mantua NJ; Milner AM; Radić V; Reeves GH; Schindler DE; Whited DC
    Bioscience; 2020 Mar; 70(3):220-236. PubMed ID: 32174645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The utilization of a Pacific salmon Oncorhynchus nerka subsidy by three populations of charr Salvelinus spp.
    Denton KP; Rich HB; Moore JW; Quinn TP
    J Fish Biol; 2010 Sep; 77(4):1006-23. PubMed ID: 20840627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.
    Sparks MM; Westley PAH; Falke JA; Quinn TP
    Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrologic Alterations from Climate Change Inform Assessment of Ecological Risk to Pacific Salmon in Bristol Bay, Alaska.
    Wobus C; Prucha R; Albert D; Woll C; Loinaz M; Jones R; Travers C
    PLoS One; 2015; 10(12):e0143905. PubMed ID: 26645380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pike pests ravage Alaska's salmon.
    Dalton R
    Nature; 2002 Aug; 418(6901):907. PubMed ID: 12198508
    [No Abstract]   [Full Text] [Related]  

  • 60. Can intense predation by bears exert a depensatory effect on recruitment in a Pacific salmon population?
    Quinn TP; Cunningham CJ; Randall J; Hilborn R
    Oecologia; 2014 Oct; 176(2):445-56. PubMed ID: 25154755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.