BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 11053053)

  • 1. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2).
    MacGregor GG; Xu JZ; McNicholas CM; Giebisch G; Hebert SC
    Am J Physiol; 1998 Sep; 275(3):F415-22. PubMed ID: 9729515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ROMK by extracellular cations.
    Sackin H; Syn S; Palmer LG; Choe H; Walters DE
    Biophys J; 2001 Feb; 80(2):683-97. PubMed ID: 11159436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
    Choe H; Zhou H; Palmer LG; Sackin H
    Am J Physiol; 1997 Oct; 273(4):F516-29. PubMed ID: 9362329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
    Xu ZC; Yang Y; Hebert SC
    J Biol Chem; 1996 Apr; 271(16):9313-9. PubMed ID: 8621594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent modulation of the cloned renal K+ channel, ROMK.
    McNicholas CM; MacGregor GG; Islas LD; Yang Y; Hebert SC; Giebisch G
    Am J Physiol; 1998 Dec; 275(6):F972-81. PubMed ID: 9843915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
    McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
    Xu H; Cui N; Yang Z; Qu Z; Jiang C
    J Physiol; 2000 May; 524 Pt 3(Pt 3):725-35. PubMed ID: 10790154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH.
    Hughes BA; Swaminathan A
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C423-31. PubMed ID: 18094146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basolateral K+ conductance in principal cells of rat CCD.
    Gray DA; Frindt G; Zhang YY; Palmer LG
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F493-504. PubMed ID: 15547117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte.
    Tanemoto M; Vanoye CG; Dong K; Welch R; Abe T; Hebert SC; Xu JZ
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F659-66. PubMed ID: 10751228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein.
    Ali S; Wei Y; Lerea KM; Becker L; Rubin CS; Wang W
    Cell Physiol Biochem; 2001; 11(3):135-42. PubMed ID: 11410709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition.
    Macica CM; Yang Y; Lerea K; Hebert SC; Wang W
    Am J Physiol; 1998 Jan; 274(1):F175-81. PubMed ID: 9458837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
    Liou HH; Zhou SS; Huang CL
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5820-5. PubMed ID: 10318968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium modulates ROMK channel-mediated potassium secretion.
    Yang L; Frindt G; Palmer LG
    J Am Soc Nephrol; 2010 Dec; 21(12):2109-16. PubMed ID: 21030597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.