BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 11053103)

  • 1. Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.
    Zhabotinsky AM
    Biophys J; 2000 Nov; 79(5):2211-21. PubMed ID: 11053103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient versus asymptotic dynamics of CaM kinase II: possible roles of phosphatase.
    Kubota Y; Bower JM
    J Comput Neurosci; 2001; 11(3):263-79. PubMed ID: 11796942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density.
    Strack S; Choi S; Lovinger DM; Colbran RJ
    J Biol Chem; 1997 May; 272(21):13467-70. PubMed ID: 9153188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling.
    Bradshaw JM; Kubota Y; Meyer T; Schulman H
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly.
    Lisman JE; Zhabotinsky AM
    Neuron; 2001 Aug; 31(2):191-201. PubMed ID: 11502252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation.
    Atkins CM; Davare MA; Oh MC; Derkach V; Soderling TR
    J Neurosci; 2005 Jun; 25(23):5604-10. PubMed ID: 15944388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STDP in a bistable synapse model based on CaMKII and associated signaling pathways.
    Graupner M; Brunel N
    PLoS Comput Biol; 2007 Nov; 3(11):e221. PubMed ID: 18052535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover.
    Miller P; Zhabotinsky AM; Lisman JE; Wang XJ
    PLoS Biol; 2005 Apr; 3(4):e107. PubMed ID: 15819604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP.
    Blitzer RD; Connor JH; Brown GP; Wong T; Shenolikar S; Iyengar R; Landau EM
    Science; 1998 Jun; 280(5371):1940-2. PubMed ID: 9632393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation and activation of Ca2+/calmodulin-dependent protein kinase phosphatase by Ca2+/calmodulin-dependent protein kinase II.
    Kameshita I; Ishida A; Fujisawa H
    FEBS Lett; 1999 Aug; 456(2):249-52. PubMed ID: 10456318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons.
    Lu FM; Hawkins RD
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4264-9. PubMed ID: 16537519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II.
    Ishida A; Kameshita I; Fujisawa H
    J Biol Chem; 1998 Jan; 273(4):1904-10. PubMed ID: 9442023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome.
    Weeber EJ; Jiang YH; Elgersma Y; Varga AW; Carrasquillo Y; Brown SE; Christian JM; Mirnikjoo B; Silva A; Beaudet AL; Sweatt JD
    J Neurosci; 2003 Apr; 23(7):2634-44. PubMed ID: 12684449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts.
    Harvey BP; Banga SS; Ozer HL
    J Biol Chem; 2004 Jun; 279(23):24889-98. PubMed ID: 15140879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of multifunctional Ca2+/calmodulin-dependent protein kinases by Ca2+/calmodulin-dependent protein kinase phosphatase.
    Ishida A; Okuno S; Kitani T; Kameshita I; Fujisawa H
    Biochem Biophys Res Commun; 1998 Dec; 253(1):159-63. PubMed ID: 9875237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism.
    Coomber CJ
    Neural Comput; 1998 Oct; 10(7):1653-78. PubMed ID: 9744891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural mechanism for maintaining the 'on-state' of the CaMKII memory switch in the post-synaptic density.
    Mullasseril P; Dosemeci A; Lisman JE; Griffith LC
    J Neurochem; 2007 Oct; 103(1):357-64. PubMed ID: 17877639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.