These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11053114)

  • 1. GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans.
    Khatchatouriants A; Lewis A; Rothman Z; Loew L; Treinin M
    Biophys J; 2000 Nov; 79(5):2345-52. PubMed ID: 11053114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New ways to look at axons in Caenorhabditis elegans.
    Hutter H
    Microsc Res Tech; 2000 Jan; 48(1):47-54. PubMed ID: 10620784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans.
    Rose JK; Sangha S; Rai S; Norman KR; Rankin CH
    J Neurosci; 2005 Aug; 25(31):7159-68. PubMed ID: 16079398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans.
    Felkai S; Ewbank JJ; Lemieux J; Labbé JC; Brown GG; Hekimi S
    EMBO J; 1999 Apr; 18(7):1783-92. PubMed ID: 10202142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eppendorf essay winner. Deconstructing C. elegans sensory mechanotransduction.
    Goodman MB
    Science; 2004 Oct; 306(5695):427-8. PubMed ID: 15486284
    [No Abstract]   [Full Text] [Related]  

  • 6. Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans.
    Francis MM; Mellem JE; Maricq AV
    Trends Neurosci; 2003 Feb; 26(2):90-9. PubMed ID: 12536132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans.
    Liedtke W; Tobin DM; Bargmann CI; Friedman JM
    Proc Natl Acad Sci U S A; 2003 Nov; 100 Suppl 2(Suppl 2):14531-6. PubMed ID: 14581619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring real-time in vivo redox biology of developing and aging Caenorhabditis elegans.
    Back P; De Vos WH; Depuydt GG; Matthijssens F; Vanfleteren JR; Braeckman BP
    Free Radic Biol Med; 2012 Mar; 52(5):850-9. PubMed ID: 22226831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a bicistronic vector for the co-expression of two genes in Caenorhabditis elegans using a newly identified IRES.
    Li D; Wang M
    Biotechniques; 2012 Mar; 52(3):173-6. PubMed ID: 22401550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans beta-catenin homolog BAR-1.
    Natarajan L; Jackson BM; Szyleyko E; Eisenmann DM
    Dev Biol; 2004 Aug; 272(2):536-57. PubMed ID: 15282167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans.
    Huang M; Chalfie M
    Nature; 1994 Feb; 367(6462):467-70. PubMed ID: 7509039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans.
    Sym M; Robinson N; Kenyon C
    Cell; 1999 Jul; 98(1):25-36. PubMed ID: 10412978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecules that mediate touch transduction in the nematode Caenorhabditis elegans.
    Driscoll M; Tavernarakis N
    Gravit Space Biol Bull; 1997 Jun; 10(2):33-42. PubMed ID: 11540117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic organization of an avermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans.
    Liu J; Dent JA; Beech RN; Prichard RK
    Mol Biochem Parasitol; 2004 Apr; 134(2):267-74. PubMed ID: 15003846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial division in Caenorhabditis elegans.
    Gandre S; van der Bliek AM
    Methods Mol Biol; 2007; 372():485-501. PubMed ID: 18314747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five-colour in vivo imaging of neurons in Caenorhabditis elegans.
    Hutter H
    J Microsc; 2004 Aug; 215(Pt 2):213-8. PubMed ID: 15315508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odorant-induced membrane potential depolarization of AIY interneuron in Caenorhabditis elegans.
    Shidara H; Kobayashi J; Tanamoto R; Hotta K; Oka K
    Neurosci Lett; 2013 Apr; 541():199-203. PubMed ID: 23428508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed.
    Kobayashi J; Shidara H; Morisawa Y; Kawakami M; Tanahashi Y; Hotta K; Oka K
    Neurosci Lett; 2013 Aug; 548():261-4. PubMed ID: 23748043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanosensation in Caenorhabditis elegans.
    O'Hagan R; Chalfie M
    Int Rev Neurobiol; 2006; 69():169-203. PubMed ID: 16492465
    [No Abstract]   [Full Text] [Related]  

  • 20. Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation.
    Inoue T; Thomas JH
    Dev Biol; 2000 Jan; 217(1):192-204. PubMed ID: 10625546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.