These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 11053390)
21. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. Ramos JL; Duque E; Huertas MJ; Haïdour A J Bacteriol; 1995 Jul; 177(14):3911-6. PubMed ID: 7608060 [TBL] [Abstract][Full Text] [Related]
22. Global and cognate regulators control the expression of the organic solvent efflux pumps TtgABC and TtgDEF of Pseudomonas putida. Duque E; Segura A; Mosqueda G; Ramos JL Mol Microbiol; 2001 Feb; 39(4):1100-6. PubMed ID: 11251828 [TBL] [Abstract][Full Text] [Related]
23. The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Rodríguez-Herva JJ; García V; Hurtado A; Segura A; Ramos JL Environ Microbiol; 2007 Jun; 9(6):1550-61. PubMed ID: 17504492 [TBL] [Abstract][Full Text] [Related]
24. Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock. Huertas MJ; Duque E; Marqués S; Ramos JL Appl Environ Microbiol; 1998 Jan; 64(1):38-42. PubMed ID: 9435060 [TBL] [Abstract][Full Text] [Related]
25. Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI. Volkers RJ; Snoek LB; Ruijssenaars HJ; de Winde JH PLoS One; 2015; 10(7):e0132416. PubMed ID: 26181384 [TBL] [Abstract][Full Text] [Related]
26. A mutation in dnaK causes stabilization of the heat shock sigma factor σ32, accumulation of heat shock proteins and increase in toluene-resistance in Pseudomonas putida. Kobayashi Y; Ohtsu I; Fujimura M; Fukumori F Environ Microbiol; 2011 Aug; 13(8):2007-17. PubMed ID: 20880327 [TBL] [Abstract][Full Text] [Related]
27. The solvent efflux system of Pseudomonas putida S12 is not involved in antibiotic resistance. Isken S; De Bont JA Appl Microbiol Biotechnol; 2000 Nov; 54(5):711-4. PubMed ID: 11131400 [TBL] [Abstract][Full Text] [Related]
29. Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Wang Y; Rawlings M; Gibson DT; Labbé D; Bergeron H; Brousseau R; Lau PC Mol Gen Genet; 1995 Mar; 246(5):570-9. PubMed ID: 7535376 [TBL] [Abstract][Full Text] [Related]
30. Loss of the TOL meta-cleavage pathway functions of Pseudomonas putida strain PaW1 (pWW0) during growth on toluene. Brinkmann U; Ramos JL; Reineke W J Basic Microbiol; 1994; 34(5):303-9. PubMed ID: 7996396 [TBL] [Abstract][Full Text] [Related]
31. Mutations in each of the tol genes of Pseudomonas putida reveal that they are critical for maintenance of outer membrane stability. Llamas MA; Ramos JL; Rodríguez-Herva JJ J Bacteriol; 2000 Sep; 182(17):4764-72. PubMed ID: 10940016 [TBL] [Abstract][Full Text] [Related]
32. Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12. Isken S; Derks A; Wolffs PF; de Bont JA Appl Environ Microbiol; 1999 Jun; 65(6):2631-5. PubMed ID: 10347053 [TBL] [Abstract][Full Text] [Related]
33. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. Nguyen TT; Saxena A; Beveridge TJ J Electron Microsc (Tokyo); 2003; 52(5):465-9. PubMed ID: 14700078 [TBL] [Abstract][Full Text] [Related]
34. Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. Faizal I; Dozen K; Hong CS; Kuroda A; Takiguchi N; Ohtake H; Takeda K; Tsunekawa H; Kato J J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):542-7. PubMed ID: 15947959 [TBL] [Abstract][Full Text] [Related]
35. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Weber FJ; Ooijkaas LP; Schemen RM; Hartmans S; de Bont JA Appl Environ Microbiol; 1993 Oct; 59(10):3502-4. PubMed ID: 8250572 [TBL] [Abstract][Full Text] [Related]
36. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Fukumori F; Hirayama H; Takami H; Inoue A; Horikoshi K Extremophiles; 1998 Nov; 2(4):395-400. PubMed ID: 9827328 [TBL] [Abstract][Full Text] [Related]
37. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Heipieper HJ; de Bont JA Appl Environ Microbiol; 1994 Dec; 60(12):4440-4. PubMed ID: 7811084 [TBL] [Abstract][Full Text] [Related]
38. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576 [TBL] [Abstract][Full Text] [Related]
39. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. Kasai Y; Inoue J; Harayama S J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437 [TBL] [Abstract][Full Text] [Related]
40. Effect of hexadecane-induced vesiculation on the outer membrane of Acinetobacter calcoaceticus. Borneleit P; Hermsdorf T; Claus R; Walther P; Kleber HP J Gen Microbiol; 1988 Jul; 134(7):1983-92. PubMed ID: 3246592 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]