These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11053551)

  • 1. Analysis of the combined osteolathyritic effects of beta-aminopropionitrile and diethyldithiocarbamate on xenopus development.
    Cotter MA; Policz DL; Pöch G; Dawson DA
    Toxicol Sci; 2000 Nov; 58(1):144-52. PubMed ID: 11053551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of the combined osteolathyritic effects of two nitrile combinations on xenopus embryos.
    Dawson DA; Cotter MA; Policz DL; Stoffer DA; Nichols JP; Pöch G
    Toxicology; 2000 Jul; 147(3):193-207. PubMed ID: 10924801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and toxicological evaluation of agent-cofactor reactivity as a mechanism of action for osteolathyrism.
    Dawson DA; Rinaldi AC; Pöch G
    Toxicology; 2002 Aug; 177(2-3):267-84. PubMed ID: 12135629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined osteolathyric effects of beta-aminopropionitrile and penicillamine on Xenopus embryos: statistical comparison with dose-addition and independence.
    Mentzer RK; Smith ND; Pöch G; Dawson DA
    Drug Chem Toxicol; 1999 May; 22(2):359-74. PubMed ID: 10234472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of dose-response curve analysis in delineating shared or different molecular sites of action for osteolathyrogens.
    Dawson DA; Scott BD; Ellenberger MJ; Pöch G; Rinaldi AC
    Environ Toxicol Pharmacol; 2004 Mar; 16(1-2):13-23. PubMed ID: 21782690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint action of benzoic hydrazide and beta-aminopropionitrile on Xenopus embryo development.
    Dawson DA
    Toxicology; 1993 Jul; 81(2):123-30. PubMed ID: 8378938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allylamine and beta-aminopropionitrile induced aortic medial necrosis: mechanisms of synergism.
    Kumar D; Trent MB; Boor PJ
    Toxicology; 1998 Feb; 125(2-3):107-15. PubMed ID: 9570326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FETAX interlaboratory validation study: phase III--Part 1 testing.
    Bantle JA; Finch RA; Burton DT; Fort DJ; Dawson DA; Linder G; Rayburn JR; Hull M; Kumsher-King M; Gaudet-Hull AM; Turley SD
    J Appl Toxicol; 1996; 16(6):517-28. PubMed ID: 8956098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint toxic action of binary mixtures of osteolathyrogens at malformation-inducing concentrations for Xenopus embryos.
    Dawson DA; Wilke TS
    J Appl Toxicol; 1991 Dec; 11(6):415-21. PubMed ID: 1761799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiosemicarbazide-induced osteolathyrism in metamorphosing Xenopus laevis.
    Newman SM; Dumont JN
    J Exp Zool; 1983 Mar; 225(3):411-21. PubMed ID: 6842158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing.
    Lees S; Eyre DR; Barnard SM
    Connect Tissue Res; 1990; 24(2):95-105. PubMed ID: 2354637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental lathyrism in the chick embryo. The distribution of beta-aminopropionitrile.
    ORLOFF SD; GROSS J
    J Exp Med; 1963 Jun; 117(6):1009-18. PubMed ID: 13940344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithiocarbamates have a common toxic effect on zebrafish body axis formation.
    Tilton F; La Du JK; Vue M; Alzarban N; Tanguay RL
    Toxicol Appl Pharmacol; 2006 Oct; 216(1):55-68. PubMed ID: 16797628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture toxicity of microcystin-LR, paraoxon and bromadiolone in Xenopus laevis embryos.
    Ondracek K; Bandouchova H; Hilscherova K; Kovacova V; Linhart P; Miksikova M; Mlcakova V; Osickova J; Pohanka M; Skochova H; Pikula J
    Neuro Endocrinol Lett; 2015; 36 Suppl 1():114-9. PubMed ID: 26757121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial evaluation of developmental malformation as an end point in mixture toxicity hazard assessment for aquatic vertebrates.
    Dawson DA; Wilke TS
    Ecotoxicol Environ Saf; 1991 Apr; 21(2):215-26. PubMed ID: 2065633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study.
    Williams JR; Rayburn JR; Cline GR; Sauterer R; Friedman M
    J Agric Food Chem; 2014 Aug; 62(31):7927-38. PubMed ID: 25055136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The variation of sonic plesio-velocity in dose dependent lathyritic rabbit femurs.
    Lees S; Barnard SM; Churchill D
    Ultrasound Med Biol; 1987 Jan; 13(1):19-24. PubMed ID: 3551269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper.
    Zhang K; Dong R; Sun K; Wang X; Wang J; Yang CS; Zhang J
    Free Radic Biol Med; 2017 Dec; 113():143-156. PubMed ID: 28974447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationships for osteolathyrism: II. Effects of alkyl-substituted acid hydrazides.
    Schultz TW; Ranney TS
    Toxicology; 1988 Dec; 53(1):147-59. PubMed ID: 3144058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dithiocarbamates inhibit hematopoiesis via a copper-dependent mechanism.
    Pyatt DW; Yang Y; Le A; Stillman WS; Irons RD
    Biochem Biophys Res Commun; 2000 Aug; 274(2):513-8. PubMed ID: 10913369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.