These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11053736)

  • 1. Geostatistical analysis of the distribution of NH(4)(+) and NO(2)(-)-oxidizing bacteria and serotypes at the millimeter scale along a soil transect.
    Grundmann GL; Debouzie D
    FEMS Microbiol Ecol; 2000 Oct; 34(1):57-62. PubMed ID: 11053736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatial distribution of termites in shortgrass steppe: a geostatistical approach.
    Crist TO
    Oecologia; 1998 Apr; 114(3):410-416. PubMed ID: 28307785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil.
    Nunan N; Wu K; Young IM; Crawford JW; Ritz K
    Microb Ecol; 2002 Nov; 44(4):296-305. PubMed ID: 12375095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils.
    Keil D; Meyer A; Berner D; Poll C; Schützenmeister A; Piepho HP; Vlasenko A; Philippot L; Schloter M; Kandeler E; Marhan S
    FEMS Microbiol Ecol; 2011 Jul; 77(1):95-106. PubMed ID: 21410493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial scales of soil bacterial diversity--the size of a clone.
    Grundmann GL
    FEMS Microbiol Ecol; 2004 May; 48(2):119-27. PubMed ID: 19712395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil.
    Wang Y; Zhu G; Song L; Wang S; Yin C
    J Basic Microbiol; 2014 Mar; 54(3):190-7. PubMed ID: 23686819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Community Structure at the Microscale in Two Different Soils.
    Michelland R; Thioulouse J; Kyselková M; Grundmann GL
    Microb Ecol; 2016 Oct; 72(3):717-24. PubMed ID: 27418177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field.
    Franklin RB; Mills AL
    FEMS Microbiol Ecol; 2003 Jun; 44(3):335-46. PubMed ID: 12830827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.
    Wang Z; Zhao G; Gao M; Chang C
    Environ Monit Assess; 2017 Feb; 189(2):80. PubMed ID: 28124294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil.
    Becker JM; Parkin T; Nakatsu CH; Wilbur JD; Konopka A
    Microb Ecol; 2006 Feb; 51(2):220-31. PubMed ID: 16463134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.
    Ke X; Angel R; Lu Y; Conrad R
    Environ Microbiol; 2013 Aug; 15(8):2275-92. PubMed ID: 23437806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.
    Banerjee S; Kennedy N; Richardson AE; Egger KN; Siciliano SD
    Can J Microbiol; 2016 Jun; 62(6):485-91. PubMed ID: 27045904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments.
    Franklin RB; Blum LK; McComb AC; Mills AL
    FEMS Microbiol Ecol; 2002 Oct; 42(1):71-80. PubMed ID: 12542032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing scale-specific environmental factors affecting soil organic carbon along two landscape transects.
    She D; Cao Y; Chen Q; Yu S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18672-83. PubMed ID: 27312896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantification comparison of spatial pattern of soil seed bank of Fraxinus mandshurica in two stands].
    Han Y; Wang Z
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):487-92. PubMed ID: 12920886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial heterogeneity of methanotrophs: a geostatistical analysis of pmoA-based T-RFLP patterns in a paddy soil.
    Krause S; Lüke C; Frenzel P
    Environ Microbiol Rep; 2009 Oct; 1(5):393-7. PubMed ID: 23765892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil.
    Nunan N; Wu K; Young IM; Crawford JW; Ritz K
    FEMS Microbiol Ecol; 2003 May; 44(2):203-15. PubMed ID: 19719637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.
    Wu BM; van Bruggen AH; Subbarao KV; Pennings GG
    Phytopathology; 2001 Feb; 91(2):134-42. PubMed ID: 18944386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping field-scale spatial patterns of size and activity of the denitrifier community.
    Philippot L; Cuhel J; Saby NP; Chèneby D; Chronáková A; Bru D; Arrouays D; Martin-Laurent F; Simek M
    Environ Microbiol; 2009 Jun; 11(6):1518-26. PubMed ID: 19260937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Response of fine roots to soil nutrient spatial heterogeneity].
    Wang Q; Cheng Y
    Ying Yong Sheng Tai Xue Bao; 2004 Jun; 15(6):1063-8. PubMed ID: 15362636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.