BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 11054073)

  • 1. Myeloid NGS Analyses of Paired Samples from Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group.
    Jansko-Gadermeir B; Leisch M; Gassner FJ; Zaborsky N; Dillinger T; Hutter S; Risch A; Melchardt T; Egle A; Drost M; Larcher-Senn J; Greil R; Pleyer L
    Cancers (Basel); 2023 Apr; 15(8):. PubMed ID: 37190237
    [No Abstract]   [Full Text] [Related]  

  • 2. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes.
    Kouroukli O; Symeonidis A; Foukas P; Maragkou MK; Kourea EP
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel spontaneous myelodysplastic syndrome mouse model.
    Li W; Cao L; Li M; Yang X; Zhang W; Song Z; Wang X; Zhang L; Morahan G; Qin C; Gao R
    Animal Model Exp Med; 2021 Jun; 4(2):169-180. PubMed ID: 34179724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells.
    Carlsten M; Järås M
    Front Immunol; 2019; 10():2357. PubMed ID: 31681270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes.
    Hejazi M; Manser AR; Fröbel J; Kündgen A; Zhao X; Schönberg K; Germing U; Haas R; Gattermann N; Uhrberg M
    Haematologica; 2015 May; 100(5):643-52. PubMed ID: 25682594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T cells of patients with myelodysplastic syndrome are frequently derived from the malignant clone.
    Vercauteren SM; Starczynowski DT; Sung S; McNeil K; Salski C; Jensen CL; Bruyere H; Lam WL; Karsan A
    Br J Haematol; 2012 Feb; 156(3):409-12. PubMed ID: 25289412
    [No Abstract]   [Full Text] [Related]  

  • 8. Gene expression patterns in myelodyplasia underline the role of apoptosis and differentiation in disease initiation and progression.
    Bar M; Stirewalt D; Pogosova-Agadjanyan E; Wagner V; Gooley T; Abbasi N; Bhatia R; Deeg HJ; Radich J
    Transl Oncogenomics; 2008; 3():137-49. PubMed ID: 20396593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors.
    Epling-Burnette PK; Bai F; Painter JS; Rollison DE; Salih HR; Krusch M; Zou J; Ku E; Zhong B; Boulware D; Moscinski L; Wei S; Djeu JY; List AF
    Blood; 2007 Jun; 109(11):4816-24. PubMed ID: 17341666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis.
    Oka Y; Tsuboi A; Murakami M; Hirai M; Tominaga N; Nakajima H; Elisseeva OA; Masuda T; Nakano A; Kawakami M; Oji Y; Ikegame K; Hosen N; Udaka K; Yasukawa M; Ogawa H; Kawase I; Sugiyama H
    Int J Hematol; 2003 Jul; 78(1):56-61. PubMed ID: 12894852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clonality in the myelodysplastic syndromes.
    Boultwood J; Wainscoat JS
    Int J Hematol; 2001 Jun; 73(4):411-415. PubMed ID: 11503954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence in situ hybridization of progenitor cells obtained by fluorescence-activated cell sorting for the detection of cells affected by chromosome abnormality trisomy 8 in patients with myelodysplastic syndromes.
    Saitoh K; Miura I; Takahashi N; Miura AB
    Blood; 1998 Oct; 92(8):2886-92. PubMed ID: 9763574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage involvement of stem cells bearing the philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization.
    Takahashi N; Miura I; Saitoh K; Miura AB
    Blood; 1998 Dec; 92(12):4758-63. PubMed ID: 9845542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clonal cell lineage involvement in myelodysplastic syndromes studied by fluorescence in situ hybridization and morphology.
    Bernell P; Jacobsson B; Nordgren A; Hast R
    Leukemia; 1996 Apr; 10(4):662-8. PubMed ID: 8618444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in laboratory medicine in chronic myeloid leukemia].
    Miura A
    Rinsho Byori; 1998 Dec; 46(12):1226-31. PubMed ID: 9916508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of natural killer cells in patients with myelodysplastic syndrome carrying monosomy 7 revealed by the application of fluorescence in situ hybridization to cells collected by means of fluorescence-activated cell sorting.
    Miura I; Kobayashi Y; Takahashi N; Saitoh K; Miura AB
    Br J Haematol; 2000 Sep; 110(4):876-9. PubMed ID: 11054073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cytogenetics of stem cells: target cells of chromosome aberrations as revealed by the application of fluorescence in situ hybridization to fluorescence-activated cell sorting.
    Miura I; Takahashi N; Kobayashi Y; Saito K; Miura AB
    Int J Hematol; 2000 Oct; 72(3):310-7. PubMed ID: 11185986
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.