These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11054917)

  • 41. An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical mr volumes.
    Kriegeskorte N; Goebel R
    Neuroimage; 2001 Aug; 14(2):329-46. PubMed ID: 11467907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intraoperative cortical surface characterization using laser range scanning: preliminary results.
    Sinha TK; Miga MI; Cash DM; Weil RJ
    Neurosurgery; 2006 Oct; 59(4 Suppl 2):ONS368-76; discussion ONS376-7. PubMed ID: 17041506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain segmentation and the generation of cortical surfaces.
    Joshi M; Cui J; Doolittle K; Joshi S; Van Essen D; Wang L; Miller MI
    Neuroimage; 1999 May; 9(5):461-76. PubMed ID: 10329286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRUISE: cortical reconstruction using implicit surface evolution.
    Han X; Pham DL; Tosun D; Rettmann ME; Xu C; Prince JL
    Neuroimage; 2004 Nov; 23(3):997-1012. PubMed ID: 15528100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel quantitative validation of the cortical surface reconstruction algorithm using MRI phantom: issues on local geometric accuracy and cortical thickness.
    Lee J; Lee JM; Kim JH; Kim IY; Evans AC; Kim SI
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):183-90. PubMed ID: 17354889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-manifold diffeomorphic metric mapping for aligning cortical hemispheric surfaces.
    Zhong J; Qiu A
    Neuroimage; 2010 Jan; 49(1):355-65. PubMed ID: 19698793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating cortical variability using a generic gyral model.
    Lohmann G; von Cramon DY; Colchester AC
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):109-16. PubMed ID: 17354762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A geometric method for automatic extraction of sulcal fundi.
    Kao CY; Hofer M; Sapiro G; Stem J; Rehm K; Rottenberg DA
    IEEE Trans Med Imaging; 2007 Apr; 26(4):530-40. PubMed ID: 17427740
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of cortical landmarks based on structural connectivity to subcortical regions.
    Zhang D; Guo L; Hu X; Li K; Zhu D; Jiang X; Chen H; Deng F; Zhao Q; Liu T
    Int J Comput Biol Drug Des; 2011; 4(4):345-60. PubMed ID: 22199035
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diffeomorphic brain registration under exhaustive sulcal constraints.
    Auzias G; Colliot O; Glaunès JA; Perrot M; Mangin JF; Trouvé A; Baillet S
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1214-27. PubMed ID: 21278014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring connectivity of the brain's white matter with dynamic queries.
    Sherbondy A; Akers D; Mackenzie R; Dougherty R; Wandell B
    IEEE Trans Vis Comput Graph; 2005; 11(4):419-30. PubMed ID: 16138552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-contrast multi-scale surface registration for improved alignment of cortical areas.
    Tardif CL; Schäfer A; Waehnert M; Dinse J; Turner R; Bazin PL
    Neuroimage; 2015 May; 111():107-22. PubMed ID: 25676917
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces.
    Thompson PM; MacDonald D; Mega MS; Holmes CJ; Evans AC; Toga AW
    J Comput Assist Tomogr; 1997; 21(4):567-81. PubMed ID: 9216760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of in vivo Sulci on the External Surface of Eight Adult Chimpanzee Brains: Implications for Interpreting Early Hominin Endocasts.
    Falk D; Zollikofer CPE; Ponce de León M; Semendeferi K; Alatorre Warren JL; Hopkins WD
    Brain Behav Evol; 2018; 91(1):45-58. PubMed ID: 29533941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tightly controlled fMRI dataset for receptive field mapping in human visual cortex.
    Soch J; Görgen K; Heinzle J; Haynes JD
    Data Brief; 2023 Apr; 47():109018. PubMed ID: 36936634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presence or absence of a prefrontal sulcus is linked to reasoning performance during child development.
    Willbrand EH; Voorhies WI; Yao JK; Weiner KS; Bunge SA
    Brain Struct Funct; 2022 Sep; 227(7):2543-2551. PubMed ID: 35932310
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Macaque Area V2/V3 Reorganization Following Homonymous Retinal Lesions.
    Keliris GA; Shao Y; Schmid MC; Augath M; Logothetis NK; Smirnakis SM
    Front Neurosci; 2022; 16():757091. PubMed ID: 35153666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative characterization of the human retinotopic map based on quasiconformal mapping.
    Ta D; Tu Y; Lu ZL; Wang Y
    Med Image Anal; 2022 Jan; 75():102230. PubMed ID: 34666194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cognitive insights from tertiary sulci in prefrontal cortex.
    Voorhies WI; Miller JA; Yao JK; Bunge SA; Weiner KS
    Nat Commun; 2021 Aug; 12(1):5122. PubMed ID: 34433806
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.