These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11055285)

  • 1. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices.
    Tangpasuthadol V; Pendharkar SM; Peterson RC; Kohn J
    Biomaterials; 2000 Dec; 21(23):2379-87. PubMed ID: 11055285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds.
    Tangpasuthadol V; Pendharkar SM; Kohn J
    Biomaterials; 2000 Dec; 21(23):2371-8. PubMed ID: 11055284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials.
    Ertel SI; Kohn J
    J Biomed Mater Res; 1994 Aug; 28(8):919-30. PubMed ID: 7983090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.
    James K; Levene H; Parsons JR; Kohn J
    Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid).
    Choueka J; Charvet JL; Koval KJ; Alexander H; James KS; Hooper KA; Kohn J
    J Biomed Mater Res; 1996 May; 31(1):35-41. PubMed ID: 8731147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol).
    Bourke SL; Kohn J
    Adv Drug Deliv Rev; 2003 Apr; 55(4):447-66. PubMed ID: 12706045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates.
    Amsden B
    Macromol Biosci; 2021 Jul; 21(7):e2100085. PubMed ID: 33893715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications.
    Fiordeliso J; Bron S; Kohn J
    J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of water uptake in degradable polymers by thermally stimulated depolarization currents.
    Suárez N; Brocchini S; Kohn J
    Biomaterials; 1998 Dec; 19(24):2347-56. PubMed ID: 9884049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials. Part I: synthesis and evaluation.
    Yu C; Kohn J
    Biomaterials; 1999 Feb; 20(3):253-64. PubMed ID: 10030602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols.
    Sommerfeld SD; Zhang Z; Costache MC; Vega SL; Kohn J
    Biomacromolecules; 2014 Mar; 15(3):830-6. PubMed ID: 24432806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.
    Thomas AW; Dove AP
    Macromol Biosci; 2016 Dec; 16(12):1762-1775. PubMed ID: 27654885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials.
    Yu W; Maynard E; Chiaradia V; Arno MC; Dove AP
    Chem Rev; 2021 Sep; 121(18):10865-10907. PubMed ID: 33591164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycarbonates from the polyhydroxy natural product quinic acid.
    Besset CJ; Lonnecker AT; Streff JM; Wooley KL
    Biomacromolecules; 2011 Jul; 12(7):2512-7. PubMed ID: 21644574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.
    Tsai FT; Wang Y; Darensbourg DJ
    J Am Chem Soc; 2016 Apr; 138(13):4626-33. PubMed ID: 26974858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation-Responsive Aliphatic Polycarbonates from N-Substituted Eight-Membered Cyclic Carbonate: Synthesis and Degradation Study.
    Qiu FY; Yu L; Du FS; Li ZC
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28837743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.