These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11055287)

  • 41. Surface modification of polyanhydride microspheres.
    Gao J; Niklason L; Zhao XM; Langer R
    J Pharm Sci; 1998 Feb; 87(2):246-8. PubMed ID: 9519161
    [No Abstract]   [Full Text] [Related]  

  • 42. An investigation of the cytotoxicity and histocompatibility of in situ forming lactic acid based orthopedic biomaterials.
    Burdick JA; Padera RF; Huang JV; Anseth KS
    J Biomed Mater Res; 2002; 63(5):484-91. PubMed ID: 12209891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels).
    Miyamoto K; Sasaki M; Minamisawa Y; Kurahashi Y; Kano H; Ishikawa S
    J Biomed Mater Res A; 2004 Sep; 70(4):550-9. PubMed ID: 15307159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioerodible polyanhydrides for controlled drug delivery.
    Rosen HB; Chang J; Wnek GE; Linhardt RJ; Langer R
    Biomaterials; 1983 Apr; 4(2):131-3. PubMed ID: 6860755
    [No Abstract]   [Full Text] [Related]  

  • 45. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging.
    Kim YK; Na HK; Kwack SJ; Ryoo SR; Lee Y; Hong S; Hong S; Jeong Y; Min DH
    ACS Nano; 2011 Jun; 5(6):4550-61. PubMed ID: 21539346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of internal structure, polymer erosion and drug release mechanisms of biodegradable poly(ester anhydride)s by X-ray microtomography.
    Mönkäre J; Pajander J; Hakala RA; Savolainen P; Järveläinen M; Korhonen H; Seppälä JV; Järvinen K
    Eur J Pharm Sci; 2012 Aug; 47(1):170-8. PubMed ID: 22683891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior.
    Kang W; Bi B; Zhuo R; Jiang X
    Carbohydr Polym; 2017 Mar; 160():18-25. PubMed ID: 28115092
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The synthesis of polyanhydrides and its application in biomedical field].
    Yu M; Wang Y; Fang S; Song J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):135-8. PubMed ID: 12744184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry.
    van Dijk M; Nollet ML; Weijers P; Dechesne AC; van Nostrum CF; Hennink WE; Rijkers DT; Liskamp RM
    Biomacromolecules; 2008 Oct; 9(10):2834-43. PubMed ID: 18817441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides.
    Kricheldorf HR
    Angew Chem Int Ed Engl; 2006 Sep; 45(35):5752-84. PubMed ID: 16948174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response.
    Brauer DS; Rüssel C; Vogt S; Weisser J; Schnabelrauch M
    J Mater Sci Mater Med; 2008 Jan; 19(1):121-7. PubMed ID: 17587147
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries.
    Goodman JT; Mullis AS; Dunshee L; Mitra A; Narasimhan B
    ACS Comb Sci; 2018 May; 20(5):298-307. PubMed ID: 29617113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.
    Engelberg I; Kohn J
    Biomaterials; 1991 Apr; 12(3):292-304. PubMed ID: 1649646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material.
    Boeree NR; Dove J; Cooper JJ; Knowles J; Hastings GW
    Biomaterials; 1993 Aug; 14(10):793-6. PubMed ID: 8218731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry.
    Wang J; Liu Q; Liang Y; Jiang G
    Anal Bioanal Chem; 2016 Apr; 408(11):2861-73. PubMed ID: 26753968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity.
    Leong KW; D'Amore PD; Marletta M; Langer R
    J Biomed Mater Res; 1986 Jan; 20(1):51-64. PubMed ID: 3949823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of a novel degradable phosphate-containing hydrogel.
    Wang DA; Williams CG; Li Q; Sharma B; Elisseeff JH
    Biomaterials; 2003 Oct; 24(22):3969-80. PubMed ID: 12834592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxy fatty acid based polyanhydride as drug delivery system: synthesis, characterization, in vitro degradation, drug release, and biocompatibility.
    Jain JP; Modi S; Kumar N
    J Biomed Mater Res A; 2008 Mar; 84(3):740-52. PubMed ID: 17635032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.