BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11055806)

  • 1. Paraquat and iron-dependent lipid peroxidation. NADPH versus NADPH-generating systems.
    Fernandez Y; Anglade F; Mitjavila S
    Biol Trace Elem Res; 2000 Jun; 74(3):191-201. PubMed ID: 11055806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin stimulation of lipid peroxidation by microsomes after chronic ethanol treatment: role of cytochrome P4502E1.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1996 Aug; 332(1):121-7. PubMed ID: 8806716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of novel naphthofuranquinones on rat liver microsomal peroxidation.
    Elingold I; Taboas MI; Casanova MB; Galleano M; Silva RS; Menna-Barreto RF; Ventura Pinto A; de Castro SL; Costa LE; Dubin M
    Chem Biol Interact; 2009 Dec; 182(2-3):213-9. PubMed ID: 19744469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative properties of mitochondrial and microsomal NAD(P)H-dependent lipid peroxidation].
    Osinskaia LF; Chumakov VN
    Biokhimiia; 1980 Feb; 45(2):217-27. PubMed ID: 7388064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between dual NADPH-dependent reactions of paraquat in mouse brain microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    Res Commun Chem Pathol Pharmacol; 1991 Jul; 73(1):119-22. PubMed ID: 1882122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Cederbaum AI
    Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The study of the in vitro effect of selenium on formation of active oxygen species and lipid peroxidation in rat liver microsomes].
    Lashneva NV; Karge E; Knells U; Klinger V; Splinter FK; Tutel'ian VA
    Vopr Med Khim; 1996; 42(2):119-24. PubMed ID: 9148594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-dependent electron transport chain in microsomes and lipid peroxidation catalyzed by metal ions.
    Wetzker R; Sobolev AS
    Acta Biol Med Ger; 1979; 38(2-3):435-42. PubMed ID: 42249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of paraquat effects on malondialdehyde formation in thymus cells.
    Kirkova M; Ivancheva E; Russanov E; Topaloglou A; Altmann H
    Acta Physiol Pharmacol Bulg; 1986; 12(3):50-7. PubMed ID: 3028040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paraquat inhibits the lipid peroxidation caused by carbon tetrachloride in guinea pig liver microsome.
    Sato N; Fujii K; Kawamoto M; Yuge O; Morio M
    Res Commun Chem Pathol Pharmacol; 1990 Oct; 70(1):93-101. PubMed ID: 2175929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsomal reduction of low-molecular-weight Fe3+ chelates and ferritin: enhancement by adriamycin, paraquat, menadione, and anthraquinone 2-sulfonate and inhibition by oxygen.
    Vile GF; Winterbourn CC
    Arch Biochem Biophys; 1988 Dec; 267(2):606-13. PubMed ID: 2850767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsomal lipid peroxidation: mechanisms of initiation. The role of iron and iron chelators.
    Ursini F; Maiorino M; Hochstein P; Ernster L
    Free Radic Biol Med; 1989; 6(1):31-6. PubMed ID: 2492247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron ore mines leachate potential for oxyradical production.
    Hamoutene D; Rahimtula A; Payne J
    Ecotoxicol Environ Saf; 2000 Jun; 46(2):218-24. PubMed ID: 10831336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsomal membrane peroxidation by an Fe3+/paraquat system. Consequences of phenobarbital induction.
    Fernandez Y; Subirade I; Anglade F; Periquet A; Mitjavila S
    Biol Trace Elem Res; 1995; 47(1-3):9-15. PubMed ID: 7779580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentane as an index of in vitro lipid peroxidation via microsomal NADPH-P-450 enzyme systems.
    Sato N; Fujii K; Yuge O; Morio M
    Hiroshima J Med Sci; 1989 Sep; 38(3):131-4. PubMed ID: 2584057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of lecithin on liver microsomal lipid peroxidation].
    Aristarkhova SA; Burlakova EB; Sheludchenko NI
    Biokhimiia; 1979 Jan; 44(1):125-9. PubMed ID: 33726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation of iron-induced lipid peroxidation by a series of bipyridyls in relation to their ability to reduce iron.
    Fernandez Y; Anglade F; Mitjavila S
    Toxicol Lett; 1997 Sep; 93(1):65-71. PubMed ID: 9381484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.