These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 11055819)

  • 21. Energy system interaction and relative contribution during maximal exercise.
    Gastin PB
    Sports Med; 2001; 31(10):725-41. PubMed ID: 11547894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-energy phosphate compounds during exercise in human slow-twitch and fast-twitch muscle fibres.
    Rehunen S; Näveri H; Kuoppasalmi K; Härkönen M
    Scand J Clin Lab Invest; 1982 Oct; 42(6):499-506. PubMed ID: 7156863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling of aerobic and anaerobic energy production in middle-distance running.
    Busso T; Chatagnon M
    Eur J Appl Physiol; 2006 Aug; 97(6):745-54. PubMed ID: 16838187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy cost of running in young and adult female athletes.
    Bunc V; Heller J
    Ergonomics; 1994 Jan; 37(1):167-74. PubMed ID: 8112272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The physiological responses to running after cycling in elite junior and senior triathletes.
    Millet GP; Bentley DJ
    Int J Sports Med; 2004 Apr; 25(3):191-7. PubMed ID: 15088243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A field test for determining the speed obtained through anaerobic glycolysis in runners.
    Borsetto C; Ballarin E; Casoni I; Cellini M; Vitiello P; Conconi F
    Int J Sports Med; 1989 Oct; 10(5):339-45. PubMed ID: 2599721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic running capacity determined from a 3-parameter systems model: relationship with other anaerobic indices and with running performance in the 800 m-run.
    Bosquet L; Delhors PR; Duchene A; Dupont G; Leger L
    Int J Sports Med; 2007 Jun; 28(6):495-500. PubMed ID: 17541880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.
    Scott CB; Roby FB; Lohman TG; Bunt JC
    Med Sci Sports Exerc; 1991 May; 23(5):618-24. PubMed ID: 2072841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peak oxygen deficit predicts sprint and middle-distance track performance.
    Weyand PG; Cureton KJ; Conley DS; Sloniger MA; Liu YL
    Med Sci Sports Exerc; 1994 Sep; 26(9):1174-80. PubMed ID: 7808253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mathematical analysis of the bioenergetics of hurdling.
    Ward-Smith AJ
    J Sports Sci; 1997 Oct; 15(5):517-26. PubMed ID: 9386209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kinetics of anaerobic metabolism following the initiation of high-intensity exercise.
    Ward-Smith AJ
    Math Biosci; 1999 Jun; 159(1):33-45. PubMed ID: 10361804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A laboratory method for determination of anaerobic energy expenditure during sprinting.
    Thomson JM; Garvie KJ
    Can J Appl Sport Sci; 1981 Mar; 6(1):21-6. PubMed ID: 7226429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes.
    Chmura J; Nazar K
    Int J Psychophysiol; 2010 Mar; 75(3):287-90. PubMed ID: 20079773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis).
    Hancock TV; Gleeson TT
    Physiol Biochem Zool; 2008; 81(1):1-13. PubMed ID: 18040968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Respiratory gas exchange and lactate measures during competitive orienteering.
    Smekal G; Von Duvillard SP; Pokan R; Lang K; Baron R; Tschan H; Hofmann P; Bachl N
    Med Sci Sports Exerc; 2003 Apr; 35(4):682-9. PubMed ID: 12673154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved Peronnet-Thibault mathematical model of human running performance.
    Alvarez-Ramirez J
    Eur J Appl Physiol; 2002 Apr; 86(6):517-25. PubMed ID: 11944100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of competitive distance on energy expenditure during simulated competition.
    Foster C; deKoning JJ; Hettinga F; Lampen J; Dodge C; Bobbert M; Porcari JP
    Int J Sports Med; 2004 Apr; 25(3):198-204. PubMed ID: 15088244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance factors in the new combined event of modern pentathlon.
    Le Meur Y; Hausswirth C; Abbiss C; Baup Y; Dorel S
    J Sports Sci; 2010 Aug; 28(10):1111-6. PubMed ID: 20686991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological and performance characteristics of United States championship class orienteers.
    Knowlton RG; Ackerman KJ; Fitzgerald PI; Wilde SW; Tahamont MV
    Med Sci Sports Exerc; 1980; 12(3):164-9. PubMed ID: 7402051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.