BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11055918)

  • 1. Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C.
    Pak JW; Knoke KL; Noguera DR; Fox BG; Chambliss GH
    Appl Environ Microbiol; 2000 Nov; 66(11):4742-50. PubMed ID: 11055918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite.
    Wittich RM; Haïdour A; Van Dillewijn P; Ramos JL
    Environ Sci Technol; 2008 Feb; 42(3):734-9. PubMed ID: 18323095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica.
    Ziganshin AM; Gerlach R; Borch T; Naumov AV; Naumova RP
    Appl Environ Microbiol; 2007 Dec; 73(24):7898-905. PubMed ID: 17933928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds.
    van Dillewijn P; Wittich RM; Caballero A; Ramos JL
    Appl Environ Microbiol; 2008 Nov; 74(21):6820-3. PubMed ID: 18791007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase.
    French CE; Nicklin S; Bruce NC
    Appl Environ Microbiol; 1998 Aug; 64(8):2864-8. PubMed ID: 9687442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth.
    González-Pérez MM; van Dillewijn P; Wittich RM; Ramos JL
    Environ Microbiol; 2007 Jun; 9(6):1535-40. PubMed ID: 17504490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52.
    Fiorella PD; Spain JC
    Appl Environ Microbiol; 1997 May; 63(5):2007-15. PubMed ID: 16535610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica.
    Ziganshin AM; Naumova RP; Pannier AJ; Gerlach R
    Chemosphere; 2010 Apr; 79(4):426-33. PubMed ID: 20185159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene.
    Leung KH; Yao M; Stearns R; Chiu SH
    Chem Biol Interact; 1995 Jun; 97(1):37-51. PubMed ID: 7767940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases.
    Blehert DS; Fox BG; Chambliss GH
    J Bacteriol; 1999 Oct; 181(20):6254-63. PubMed ID: 10515912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ferrihydrite on 2,4,6-trinitrotoluene biotransformation by an aerobic yeast.
    Khilyas IV; Ziganshin AM; Pannier AJ; Gerlach R
    Biodegradation; 2013 Sep; 24(5):631-44. PubMed ID: 23239085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species.
    Blehert DS; Knoke KL; Fox BG; Chambliss GH
    J Bacteriol; 1997 Nov; 179(22):6912-20. PubMed ID: 9371434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitration of 2,4,6-trinitrotoluene by Pseudomonas aeruginosa ESA-5 in the presence of ferrihydrite.
    Eyers L; Stenuit B; Agathos SN
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):489-97. PubMed ID: 18357446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hydride-mediated reduction of 2,4,6-trinitrotoluene by yeasts as the way to its deep degradation].
    Ziganshin AM; Naumov AV; Suvorova ES; Naumenko EA; Naumova RP
    Mikrobiologiia; 2007; 76(6):766-73. PubMed ID: 18297867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene.
    Michels J; Gottschalk G
    Appl Environ Microbiol; 1994 Jan; 60(1):187-94. PubMed ID: 8117077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB.
    Fuller ME; McClay K; Hawari J; Paquet L; Malone TE; Fox BG; Steffan RJ
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):535-44. PubMed ID: 19455327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavoenzyme-catalyzed redox cycling of hydroxylamino- and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity.
    Sarlauskas J; Nemeikaite-Ceniene A; Anusevicius Z; Miseviciene L; Julvez MM; Medina M; Gomez-Moreno C; Cenas N
    Arch Biochem Biophys; 2004 May; 425(2):184-92. PubMed ID: 15111126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus.
    Kim HY; Song HG
    Appl Microbiol Biotechnol; 2003 Apr; 61(2):150-6. PubMed ID: 12655457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida.
    van Dillewijn P; Wittich RM; Caballero A; Ramos JL
    Appl Environ Microbiol; 2008 Nov; 74(21):6703-8. PubMed ID: 18791012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNT biotransformation: when chemistry confronts mineralization.
    Smets BF; Yin H; Esteve-Nuñez A
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):267-77. PubMed ID: 17534614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.