These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11055939)

  • 1. Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display.
    Miura S; Zou W; Ueda M; Tanaka A
    Appl Environ Microbiol; 2000 Nov; 66(11):4883-9. PubMed ID: 11055939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening for candidate genes involved in tolerance to organic solvents in yeast.
    Matsui K; Hirayama T; Kuroda K; Shirahige K; Ashikari T; Ueda M
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):75-9. PubMed ID: 16493551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide.
    Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of an organic solvent-tolerant strain from baker's yeast.
    Kawamoto T; Kanda T; Tanaka A
    Appl Microbiol Biotechnol; 2001 May; 55(4):476-9. PubMed ID: 11398930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae.
    Nishida N; Ozato N; Matsui K; Kuroda K; Ueda M
    J Biotechnol; 2013 May; 165(2):145-52. PubMed ID: 23523622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain.
    Matsui K; Teranishi S; Kamon S; Kuroda K; Ueda M
    Appl Environ Microbiol; 2008 Jul; 74(13):4222-5. PubMed ID: 18469127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol stress response in the mRNA flux of Saccharomyces cerevisiae.
    Izawa S
    Biosci Biotechnol Biochem; 2010; 74(1):7-12. PubMed ID: 20057118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of mRNA differential display to investigate gene expression in thermotolerant cells of Saccharomyces cerevisiae.
    Gross C; Watson K
    Yeast; 1998 Mar; 14(5):431-42. PubMed ID: 9559551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and Genetic Network Analysis of Genes Involved in Freezing and Thawing Resistance in
    Kim IS; Choi W; Son J; Lee JH; Lee H; Lee J; Shin SC; Kim HW
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33546197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining if an mRNA is a Substrate of Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae.
    Johansson MJ
    Methods Mol Biol; 2017; 1507():169-177. PubMed ID: 27832540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae.
    Hurowitz EH; Brown PO
    Genome Biol; 2003; 5(1):R2. PubMed ID: 14709174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of transcriptional regulation in budding yeast.
    Brem RB; Yvert G; Clinton R; Kruglyak L
    Science; 2002 Apr; 296(5568):752-5. PubMed ID: 11923494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-in-oil macroemulsions sustain long-term viability of microbial cells in organic solvents.
    Stefan A; Palazzo G; Ceglie A; Panzavolta E; Hochkoeppler A
    Biotechnol Bioeng; 2003 Feb; 81(3):323-8. PubMed ID: 12474255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export.
    Krebber H; Taura T; Lee MS; Silver PA
    Genes Dev; 1999 Aug; 13(15):1994-2004. PubMed ID: 10444597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae.
    Haurie V; Perrot M; Mini T; Jenö P; Sagliocco F; Boucherie H
    J Biol Chem; 2001 Jan; 276(1):76-85. PubMed ID: 11024040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae.
    Momose Y; Matsumoto R; Maruyama A; Yamaoka M
    Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J
    Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae.
    Hwang PK; Tugendreich S; Fletterick RJ
    Mol Cell Biol; 1989 Apr; 9(4):1659-66. PubMed ID: 2657401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae.
    Zhang L; Liu N; Ma X; Jiang L
    FEMS Yeast Res; 2013 Mar; 13(2):200-18. PubMed ID: 23157175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.