BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 11055994)

  • 1. A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence.
    Ong BH; Tomaselli GF; Balser JR
    J Gen Physiol; 2000 Nov; 116(5):653-62. PubMed ID: 11055994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound-specific Na+ channel pore conformational changes induced by local anaesthetics.
    Fukuda K; Nakajima T; Viswanathan PC; Balser JR
    J Physiol; 2005 Apr; 564(Pt 1):21-31. PubMed ID: 15677685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels.
    O'Reilly JP; Wang SY; Wang GK
    Biophys J; 2001 Oct; 81(4):2100-11. PubMed ID: 11566781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis.
    Yamagishi T; Janecki M; Marban E; Tomaselli GF
    Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels.
    Balser JR; Nuss HB; Chiamvimonvat N; Pérez-García MT; Marban E; Tomaselli GF
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):431-42. PubMed ID: 8842002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional consequences of lidocaine binding to slow-inactivated sodium channels.
    Balser JR; Nuss HB; Romashko DN; Marban E; Tomaselli GF
    J Gen Physiol; 1996 May; 107(5):643-58. PubMed ID: 8740377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoform-specific lidocaine block of sodium channels explained by differences in gating.
    Nuss HB; Kambouris NG; Marbán E; Tomaselli GF; Balser JR
    Biophys J; 2000 Jan; 78(1):200-10. PubMed ID: 10620286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels.
    Chen Z; Ong BH; Kambouris NG; Marbán E; Tomaselli GF; Balser JR
    J Physiol; 2000 Apr; 524 Pt 1(Pt 1):37-49. PubMed ID: 10747182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels.
    Vedantham V; Cannon SC
    Biophys J; 2000 Jun; 78(6):2943-58. PubMed ID: 10827974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na(+) channels.
    O'Reilly JP; Shockett PE
    Biochim Biophys Acta; 2012 Mar; 1818(3):443-7. PubMed ID: 22155680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation.
    Beard JM; Shockett PE; O'Reilly JP
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183129. PubMed ID: 31738900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na+ channel.
    O'Reilly JP; Shockett PE
    Biochem Biophys Res Commun; 2006 Jun; 345(1):59-66. PubMed ID: 16674915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels.
    Vedantham V; Cannon SC
    J Gen Physiol; 1999 Jan; 113(1):7-16. PubMed ID: 9874684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic link between lidocaine block and inactivation probed by outer pore mutations in the rat micro1 skeletal muscle sodium channel.
    Kambouris NG; Hastings LA; Stepanovic S; Marban E; Tomaselli GF; Balser JR
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):693-705. PubMed ID: 9769414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels.
    Struyk AF; Cannon SC
    J Gen Physiol; 2002 Oct; 120(4):509-16. PubMed ID: 12356853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels.
    Vedantham V; Cannon SC
    J Gen Physiol; 1998 Jan; 111(1):83-93. PubMed ID: 9417137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Modification, by Lidocaine, of Fast and Slow Recovery from Inactivation of Voltage-Gated Na⁺ Channels.
    Gawali VS; Lukacs P; Cervenka R; Koenig X; Rubi L; Hilber K; Sandtner W; Todt H
    Mol Pharmacol; 2015 Nov; 88(5):866-79. PubMed ID: 26358763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quaternary ammonium block of mutant Na+ channels lacking inactivation: features of a transition-intermediate mechanism.
    Kimbrough JT; Gingrich KJ
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):93-106. PubMed ID: 11080254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics.
    Sunami A; Glaaser IW; Fozzard HA
    Mol Pharmacol; 2001 Apr; 59(4):684-91. PubMed ID: 11259611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.