BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11055995)

  • 1. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3.
    Silverman WR; Tang CY; Mock AF; Huh KB; Papazian DM
    J Gen Physiol; 2000 Nov; 116(5):663-78. PubMed ID: 11055995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating.
    Lin MC; Papazian DM
    Channels (Austin); 2007; 1(6):429-37. PubMed ID: 18690045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.
    Silverman WR; Bannister JP; Papazian DM
    Biophys J; 2004 Nov; 87(5):3110-21. PubMed ID: 15347589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-à-Go-Go potassium channels.
    Tang CY; Bezanilla F; Papazian DM
    J Gen Physiol; 2000 Mar; 115(3):319-38. PubMed ID: 10694260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening.
    Lin MC; Abramson J; Papazian DM
    J Gen Physiol; 2010 May; 135(5):415-31. PubMed ID: 20385745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural organization of the voltage sensor in voltage-dependent potassium channels.
    Papazian DM; Silverman WR; Lin MC; Tiwari-Woodruff SK; Tang CY
    Novartis Found Symp; 2002; 245():178-90; discussion 190-2, 261-4. PubMed ID: 12027007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of two-stage voltage-dependent activation in K+ channels.
    Silverman WR; Roux B; Papazian DM
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2935-40. PubMed ID: 12606713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical detection of rate-determining ion-modulated conformational changes of the ether-à-go-go K+ channel voltage sensor.
    Bannister JP; Chanda B; Bezanilla F; Papazian DM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18718-23. PubMed ID: 16339906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating.
    Planells-Cases R; Ferrer-Montiel AV; Patten CD; Montal M
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9422-6. PubMed ID: 7568145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative charges in the transmembrane domains of the HERG K channel are involved in the activation- and deactivation-gating processes.
    Liu J; Zhang M; Jiang M; Tseng GN
    J Gen Physiol; 2003 Jun; 121(6):599-614. PubMed ID: 12771194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go K+ channel.
    Tang CY; Papazian DM
    J Gen Physiol; 1997 Mar; 109(3):301-11. PubMed ID: 9089438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.
    Kazmierczak M; Zhang X; Chen B; Mulkey DK; Shi Y; Wagner PG; Pivaroff-Ward K; Sassic JK; Bayliss DA; Jegla T
    J Gen Physiol; 2013 Jun; 141(6):721-35. PubMed ID: 23712551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mapping of a site for Cd2+-induced modification of human ether-à-go-go-related gene (hERG) channel activation.
    Fernandez D; Ghanta A; Kinard KI; Sanguinetti MC
    J Physiol; 2005 Sep; 567(Pt 3):737-55. PubMed ID: 15975984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels.
    Garg V; Stary-Weinzinger A; Sanguinetti MC
    Mol Pharmacol; 2013 Apr; 83(4):805-13. PubMed ID: 23319419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel.
    Schönherr R; Mannuzzu LM; Isacoff EY; Heinemann SH
    Neuron; 2002 Aug; 35(5):935-49. PubMed ID: 12372287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the S2 and S3 segment in determining the activation kinetics in Kv2.1 channels.
    Koopmann R; Scholle A; Ludwig J; Leicher T; Zimmer T; Pongs O; Benndorf K
    J Membr Biol; 2001 Jul; 182(1):49-59. PubMed ID: 11426299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual subunits contribute independently to slow gating of bovine EAG potassium channels.
    Schönherr R; Hehl S; Terlau H; Baumann A; Heinemann SH
    J Biol Chem; 1999 Feb; 274(9):5362-9. PubMed ID: 10026145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular linkers are involved in Mg2+-dependent modulation of the Eag potassium channel.
    Liu X; Wu Y; Zhou Y
    Channels (Austin); 2010; 4(4):311-8. PubMed ID: 20855938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes.
    Robertson GA; Warmke JM; Ganetzky B
    Neuropharmacology; 1996; 35(7):841-50. PubMed ID: 8938715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent cations slow activation of EAG family K+ channels through direct binding to S4.
    Zhang X; Bursulaya B; Lee CC; Chen B; Pivaroff K; Jegla T
    Biophys J; 2009 Jul; 97(1):110-20. PubMed ID: 19580749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.