These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11056462)

  • 1. Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras.
    Cambronero F; Puelles L
    J Comp Neurol; 2000 Nov; 427(4):522-45. PubMed ID: 11056462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains.
    Marín F; Aroca P; Puelles L
    Dev Biol; 2008 Nov; 323(2):230-47. PubMed ID: 18786526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei.
    Marín F; Puelles L
    Eur J Neurosci; 1995 Aug; 7(8):1714-38. PubMed ID: 7582126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the nuclei and cell migration in the medulla oblongata. Application of the quail-chick chimera system.
    Tan K; Le Douarin NM
    Anat Embryol (Berl); 1991; 183(4):321-43. PubMed ID: 1867385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and plasticity of the subdivisions of the inferior olivary complex.
    Hidalgo-Sánchez M; Backer S; Puelles L; Bloch-Gallego E
    Dev Biol; 2012 Nov; 371(2):215-26. PubMed ID: 22960232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features.
    Tomás-Roca L; Corral-San-Miguel R; Aroca P; Puelles L; Marín F
    Brain Struct Funct; 2016 Mar; 221(2):815-38. PubMed ID: 25381007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras.
    Díaz C; Puelles L; Marín F; Glover JC
    Dev Biol; 1998 Oct; 202(1):14-28. PubMed ID: 9758700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts.
    Millet S; Bloch-Gallego E; Simeone A; Alvarado-Mallart RM
    Development; 1996 Dec; 122(12):3785-97. PubMed ID: 9012500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of rhombomeric organisation in the postsegmental hindbrain.
    Wingate RJ; Lumsden A
    Development; 1996 Jul; 122(7):2143-52. PubMed ID: 8681795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Formation of the boundary between the midbrain and the hindbrain: involvement of Otx2 and Gbx2 genes].
    Hidalgo-Sánchez M; Millet S; Bloch-Gallego E; Alvarado-Mallart RM
    J Soc Biol; 2000; 194(3-4):113-8. PubMed ID: 11324311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plurisegmental vestibulocerebellar projections and other hindbrain cerebellar afferents in midterm chick embryos: biotinylated dextranamine experiments in vitro.
    Daz C; Puelles L
    Neuroscience; 2003; 117(1):71-82. PubMed ID: 12605894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the brain stem in the rat. III. Thymidine-radiographic study of the time of origin of neurons of the vestibular and auditory nuclei of the upper medulla.
    Altman J; Bayer SA
    J Comp Neurol; 1980 Dec; 194(4):877-904. PubMed ID: 7204645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo.
    Pasqualetti M; Díaz C; Renaud JS; Rijli FM; Glover JC
    J Neurosci; 2007 Sep; 27(36):9670-81. PubMed ID: 17804628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying brain development with quail-chick neural chimeras.
    Le Douarin NM; Tan K; Hallonet M; Kinutani M
    Kaibogaku Zasshi; 1993 Apr; 68(2):152-61. PubMed ID: 8337929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the rostrocaudal axis of the optic tectum: histological study after rostrocaudal rotation in quail-chick chimeras.
    Matsuno T; Ichijo H; Nakamura H
    Brain Res Dev Brain Res; 1991 Feb; 58(2):265-70. PubMed ID: 2029770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos.
    Ambrosiani J; Armengol JA; Martinez S; Puelles L
    Neuroreport; 1996 May; 7(7):1285-8. PubMed ID: 8817550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3.
    Guidato S; Prin F; Guthrie S
    Development; 2003 Jul; 130(13):2981-96. PubMed ID: 12756180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras.
    Burns AJ; Le Douarin NM
    Anat Rec; 2001 Jan; 262(1):16-28. PubMed ID: 11146425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras.
    Cobos I; Shimamura K; Rubenstein JL; Martínez S; Puelles L
    Dev Biol; 2001 Nov; 239(1):46-67. PubMed ID: 11784018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm.
    Borue X; Noden DM
    Development; 2004 Aug; 131(16):3967-80. PubMed ID: 15269174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.