These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11056634)

  • 1. Crystal-like high frequency phonons in the amorphous phases of solid water.
    Schober H; Koza MM; Tölle A; Masciovecchio C; Sette F; Fujara F
    Phys Rev Lett; 2000 Nov; 85(19):4100-3. PubMed ID: 11056634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal-like low frequency phonons in the low-density amorphous and high-density amorphous ices.
    Belosludov RV; Subbotin OS; Mizuseki H; Rodger PM; Kawazoe Y; Belosludov VR
    J Chem Phys; 2008 Sep; 129(11):114507. PubMed ID: 19044969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.
    Giovambattista N; Stanley HE; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031510. PubMed ID: 16241447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa.
    Handle PH; Loerting T
    J Chem Phys; 2018 Mar; 148(12):124508. PubMed ID: 29604853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced transformations in computer simulations of glassy water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2013 Nov; 139(18):184504. PubMed ID: 24320281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous ice: stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K.
    Loerting T; Schustereder W; Winkel K; Salzmann CG; Kohl I; Mayer E
    Phys Rev Lett; 2006 Jan; 96(2):025702. PubMed ID: 16486598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray Scattering and O-O Pair-Distribution Functions of Amorphous Ices.
    Mariedahl D; Perakis F; Späh A; Pathak H; Kim KH; Camisasca G; Schlesinger D; Benmore C; Pettersson LGM; Nilsson A; Amann-Winkel K
    J Phys Chem B; 2018 Aug; 122(30):7616-7624. PubMed ID: 30036063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray Raman spectroscopic study of water in the condensed phases.
    Tse JS; Shaw DM; Klug DD; Patchkovskii S; Vankó G; Monaco G; Krisch M
    Phys Rev Lett; 2008 Mar; 100(9):095502. PubMed ID: 18352721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice.
    Giovambattista N; Sciortino F; Starr FW; Poole PH
    J Chem Phys; 2016 Dec; 145(22):224501. PubMed ID: 27984880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation between high-density and very-high-density amorphous ice.
    Loerting T; Salzmann CG; Winkel K; Mayer E
    Phys Chem Chem Phys; 2006 Jun; 8(24):2810-8. PubMed ID: 16775634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual Gruneisen and Bridgman parameters of low-density amorphous ice and their implications on pressure induced amorphization.
    Andersson O; Inaba A
    J Chem Phys; 2005 Mar; 122(12):124710. PubMed ID: 15836412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits of metastability in amorphous ices: 2H-NMR relaxation.
    Löw F; Amann-Winkel K; Geil B; Loerting T; Wittich C; Fujara F
    Phys Chem Chem Phys; 2013 Jan; 15(2):576-80. PubMed ID: 23183587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity of normal and deuterated water, crystalline ice, and amorphous ices.
    Andersson O
    J Chem Phys; 2018 Sep; 149(12):124506. PubMed ID: 30278676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrated high-density amorphous ice and its first-order transition to the low-density form.
    Winkel K; Mayer E; Loerting T
    J Phys Chem B; 2011 Dec; 115(48):14141-8. PubMed ID: 21793514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of amorphous polymorphism of water.
    Koza MM; Geil B; Winkel K; Köhler C; Czeschka F; Scheuermann M; Schober H; Hansen T
    Phys Rev Lett; 2005 Apr; 94(12):125506. PubMed ID: 15903933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium-range order in amorphous ices revealed by persistent homology.
    Hong S; Kim D
    J Phys Condens Matter; 2019 Nov; 31(45):455403. PubMed ID: 31374556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deuteron spin lattice relaxation in amorphous ices.
    Scheuermann M; Geil B; Winkel K; Fujara F
    J Chem Phys; 2006 Jun; 124(22):224503. PubMed ID: 16784294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitations of lithium ammonia complexes studied by inelastic x-ray scattering.
    Burns CA; Vankó G; Sinn H; Alatas A; Alp EE; Said A
    J Chem Phys; 2006 Jan; 124(2):024720. PubMed ID: 16422639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction.
    Winkel K; Bowron DT; Loerting T; Mayer E; Finney JL
    J Chem Phys; 2009 May; 130(20):204502. PubMed ID: 19485452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.