These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11056641)

  • 1. Adsorption on carbon nanotubes: quantum spin tubes, magnetization plateaus, and conformal symmetry.
    Green D; Chamon C
    Phys Rev Lett; 2000 Nov; 85(19):4128-31. PubMed ID: 11056641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XXZ-Ising model on the triangular kagome lattice with spin 1 on the decorated trimers.
    Zhou C; Feng Y; Ruan J; Yao DX
    Phys Rev E; 2018 Jul; 98(1-1):012127. PubMed ID: 30110722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of intermediate magnetization plateaus of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice resembling a triangulated kagome lattice.
    Strečka J; Ekiz C
    Phys Rev E; 2020 Jul; 102(1-1):012132. PubMed ID: 32794906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of intermediate one-half magnetization plateau of spin-1/2 Ising-Heisenberg and Heisenberg branched chains at triple and Kosterlitz-Thouless critical points.
    Karl'ová K; Strečka J; Lyra ML
    Phys Rev E; 2019 Oct; 100(4-1):042127. PubMed ID: 31770992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin phonon induced collinear order and magnetization plateaus in triangular and kagome antiferromagnets: applications to CuFeO2.
    Wang F; Vishwanath A
    Phys Rev Lett; 2008 Feb; 100(7):077201. PubMed ID: 18352589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum spin nanotubes--frustration, competing orders and criticalities.
    Sakai T; Sato M; Okamoto K; Okunishi K; Itoi C
    J Phys Condens Matter; 2010 Oct; 22(40):403201. PubMed ID: 21386560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetization plateaus and sublattice ordering in easy-axis kagome lattice antiferromagnets.
    Sen A; Damle K; Vishwanath A
    Phys Rev Lett; 2008 Mar; 100(9):097202. PubMed ID: 18352746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of quantum spin frustration in spin-1/2 Ising-Heisenberg model on a decorated honeycomb lattice.
    Rojas O
    Phys Rev E; 2022 Jul; 106(1-1):014109. PubMed ID: 35974568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of spin excitations in the one-third magnetization plateau phase of Ba
    Kamiya Y; Ge L; Hong T; Qiu Y; Quintero-Castro DL; Lu Z; Cao HB; Matsuda M; Choi ES; Batista CD; Mourigal M; Zhou HD; Ma J
    Nat Commun; 2018 Jul; 9(1):2666. PubMed ID: 29991805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic properties of the spin S = 1/2 Heisenberg chain with hexamer modulation of exchange.
    Naseri MS; Japaridze GI; Mahdavifar S; Shayesteh SF
    J Phys Condens Matter; 2012 Mar; 24(11):116002. PubMed ID: 22353943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structured sonic tube with carbon nanotube-like topological edge states.
    Zhang Z; Gao P; Liu W; Yue Z; Cheng Y; Liu X; Christensen J
    Nat Commun; 2022 Aug; 13(1):5096. PubMed ID: 36042207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kagome antiferromagnet: a chiral topological spin liquid?
    Messio L; Bernu B; Lhuillier C
    Phys Rev Lett; 2012 May; 108(20):207204. PubMed ID: 23003183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetization plateaus induced by a coupling to the lattice.
    Vekua T; Cabra DC; Dobry A; Gazza C; Poilblanc D
    Phys Rev Lett; 2006 Mar; 96(11):117205. PubMed ID: 16605861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiferromagnetic Heisenberg model on the icosahedron: influence of connectivity and the transition from the classical to the quantum limit.
    Konstantinidis NP
    J Phys Condens Matter; 2015 Feb; 27(7):076001. PubMed ID: 25629581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-ordered ground state and thermodynamic behaviors of the spin-3/2 kagome Heisenberg antiferromagnet.
    Liu T; Li W; Su G
    Phys Rev E; 2016 Sep; 94(3-1):032114. PubMed ID: 27739841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 adsorption by nitrogen-doped carbon nanotubes predicted by density-functional theory with dispersion-correcting potentials.
    Mackie ID; DiLabio GA
    Phys Chem Chem Phys; 2011 Feb; 13(7):2780-7. PubMed ID: 21152662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition energies of fullerenes and carbon nanotubes as quantum dots: the role of symmetry.
    Ke SH; Baranger HU; Yang W
    Phys Rev Lett; 2003 Sep; 91(11):116803. PubMed ID: 14525451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-magnetization plateau stabilized by structural distortion in the antiferromagnetic heisenberg model on a pyrochlore lattice.
    Penc K; Shannon N; Shiba H
    Phys Rev Lett; 2004 Nov; 93(19):197203. PubMed ID: 15600874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirac Spin Liquid on the Spin-1/2 Triangular Heisenberg Antiferromagnet.
    Hu S; Zhu W; Eggert S; He YC
    Phys Rev Lett; 2019 Nov; 123(20):207203. PubMed ID: 31809074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetization plateaus of SrCu(2)(BO(3))(2) from a Chern-Simons theory.
    Misguich G; Jolicoeur T; Girvin SM
    Phys Rev Lett; 2001 Aug; 87(9):097203. PubMed ID: 11531595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.