These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11057614)

  • 1. Prediction for biodegradability of chemicals by an empirical flowchart.
    Hiromatsu K; Yakabe Y; Katagiri K; Nishihara T
    Chemosphere; 2000 Dec; 41(11):1749-54. PubMed ID: 11057614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural modelling of the biodegradability of benzene derivatives.
    Devillers J
    SAR QSAR Environ Res; 1993; 1(2-3):161-7. PubMed ID: 8790632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base.
    Howard PH; Boethling RS; Stiteler W; Meylan W; Beauman J
    Sci Total Environ; 1991 Dec; 109-110():635-41. PubMed ID: 1815378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water.
    Lu GH; Zhao YH; Yang SG; Cheng XJ
    Bull Environ Contam Toxicol; 2002 Jul; 69(1):111-6. PubMed ID: 12053264
    [No Abstract]   [Full Text] [Related]  

  • 5. Aerobic biodegradation of iso-butanol and ethanol and their relative effects on BTEX biodegradation in aquifer materials.
    Schaefer CE; Yang X; Pelz O; Tsao DT; Streger SH; Steffan RJ
    Chemosphere; 2010 Nov; 81(9):1104-10. PubMed ID: 20875664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data analysis and alternative modelling of MITI-I aerobic biodegradation.
    Sedykh A; Klopman G
    SAR QSAR Environ Res; 2007; 18(7-8):693-709. PubMed ID: 18038368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-biodegradability relationships (QSBRs) using modified autocorrelation method (MAM).
    Zakarya D; Belkhadir M; Fkih-Tetouani S
    SAR QSAR Environ Res; 1993; 1(1):21-7. PubMed ID: 8790625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of structure-based biodegradation estimation methods.
    Raymond JW; Rogers TN; Shonnard DR; Kline AA
    J Hazard Mater; 2001 Jun; 84(2-3):189-215. PubMed ID: 11406306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic microbial degradation of aromatic sulfur-containing compounds and effect of chemical structures.
    Zhang AQ; Han SK; Ma J; Tao XC; Wang LS
    Chemosphere; 1998 Jun; 36(15):3033-41. PubMed ID: 9747514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.
    Devillers J; Pandard P; Richard B
    SAR QSAR Environ Res; 2013; 24(12):979-93. PubMed ID: 24313438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring structure-activity relationships for polymer biodegradability by microorganisms.
    Kim JR; Thelusmond JR; Albright VC; Chai Y
    Sci Total Environ; 2023 Sep; 890():164338. PubMed ID: 37211122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.
    Rücker C; Mahmoud WMM; Schwartz D; Kümmerer K
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18393-18411. PubMed ID: 29667058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A respirometric method for the assessment of ready biodegradability: results of a ring test.
    Painter HA; King EF
    Ecotoxicol Environ Saf; 1985 Feb; 9(1):6-16. PubMed ID: 3987591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico assessment of chemical biodegradability.
    Cheng F; Ikenaga Y; Zhou Y; Yu Y; Li W; Shen J; Du Z; Chen L; Xu C; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Mar; 52(3):655-69. PubMed ID: 22332973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic assessment of biodegradability based on metabolic pathways: catabol system.
    Jaworska J; Dimitrov S; Nikolova N; Mekenyan O
    SAR QSAR Environ Res; 2002 Mar; 13(2):307-23. PubMed ID: 12071658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.
    Philipp B; Hoff M; Germa F; Schink B; Beimborn D; Mersch-Sundermann V
    Environ Sci Technol; 2007 Feb; 41(4):1390-8. PubMed ID: 17593747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of biodegradability from structure: imidazoles.
    Rorije E; Germa F; Philipp B; Schink B; Beimborn DB
    SAR QSAR Environ Res; 2002 Mar; 13(1):199-204. PubMed ID: 12074388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new in silico classification model for ready biodegradability, based on molecular fragments.
    Lombardo A; Pizzo F; Benfenati E; Manganaro A; Ferrari T; Gini G
    Chemosphere; 2014 Aug; 108():10-6. PubMed ID: 24875906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test.
    Rorije E; Loonen H; Müller M; Klopman G; Peijnenburg WJ
    Chemosphere; 1999 Mar; 38(6):1409-17. PubMed ID: 10070729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External validation of EPIWIN biodegradation models.
    Posthumus R; Traas TP; Peijnenburg WJ; Hulzebos EM
    SAR QSAR Environ Res; 2005; 16(1-2):135-48. PubMed ID: 15844447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.