These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11057620)

  • 21. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain).
    Murciego AM; Sánchez AG; González MA; Gil EP; Gordillo CT; Fernández JC; Triguero TB
    Environ Pollut; 2007 Jan; 145(1):15-21. PubMed ID: 16730108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens.
    Pierart A; Dumat C; Maes AQ; Sejalon-Delmas N
    Chemosphere; 2018 Jan; 191():272-279. PubMed ID: 29040941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioavailability of antimony and arsenic in a flowering cabbage-soil system: Controlling factors and interactive effect.
    Chang C; Li F; Wang Q; Hu M; Du Y; Zhang X; Zhang X; Chen C; Yu HY
    Sci Total Environ; 2022 Apr; 815():152920. PubMed ID: 35007579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior.
    Nakamaru Y; Tagami K; Uchida S
    Environ Pollut; 2006 May; 141(2):321-6. PubMed ID: 16246477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.
    Ngo LK; Pinch BM; Bennett WW; Teasdale PR; Jolley DF
    Environ Pollut; 2016 Sep; 216():104-114. PubMed ID: 27239694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS
    Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).
    Protano G; Nannoni F
    Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.
    De Gregori I; Fuentes E; Rojas M; Pinochet H; Potin-Gautier M
    J Environ Monit; 2003 Apr; 5(2):287-95. PubMed ID: 12729270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants.
    Zhu Y; Yang J; Wang L; Lin Z; Dai J; Wang R; Yu Y; Liu H; Rensing C; Feng R
    Sci Total Environ; 2020 Oct; 738():140232. PubMed ID: 32806353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.
    Wan XM; Tandy S; Hockmann K; Schulin R
    Environ Pollut; 2013 Jan; 172():53-60. PubMed ID: 22982553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.
    Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R
    Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil organic matter affects arsenic and antimony sorption in anaerobic soils.
    Verbeeck M; Thiry Y; Smolders E
    Environ Pollut; 2020 Feb; 257():113566. PubMed ID: 31813702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China.
    Wei C; Deng Q; Wu F; Fu Z; Xu L
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China.
    He M
    Environ Geochem Health; 2007 Jun; 29(3):209-19. PubMed ID: 17351815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system.
    Tighe M; Ashley P; Lockwood P; Wilson S
    Sci Total Environ; 2005 Jul; 347(1-3):175-86. PubMed ID: 16084977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Traffic-related distribution of antimony in roadside soils.
    Földi C; Sauermann S; Dohrmann R; Mansfeldt T
    Environ Pollut; 2018 Jun; 237():704-712. PubMed ID: 29129428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.