These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11058081)

  • 1. Fast transport of neurofilament protein along microtubules in squid axoplasm.
    Prahlad V; Helfand BT; Langford GM; Vale RD; Goldman RD
    J Cell Sci; 2000 Nov; 113 ( Pt 22)():3939-46. PubMed ID: 11058081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinesin-mediated transport of neurofilament protein oligomers in growing axons.
    Yabe JT; Pimenta A; Shea TB
    J Cell Sci; 1999 Nov; 112 ( Pt 21)():3799-814. PubMed ID: 10523515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm.
    Brady ST; Pfister KK; Bloom GS
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1061-5. PubMed ID: 1689058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
    Allen RD; Weiss DG; Hayden JH; Brown DT; Fujiwake H; Simpson M
    J Cell Biol; 1985 May; 100(5):1736-52. PubMed ID: 2580845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single microtubules from squid axoplasm support bidirectional movement of organelles.
    Schnapp BJ; Vale RD; Sheetz MP; Reese TS
    Cell; 1985 Feb; 40(2):455-62. PubMed ID: 2578325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon.
    Galbraith JA; Reese TS; Schlief ML; Gallant PE
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11589-94. PubMed ID: 10500221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTP gamma S inhibits organelle transport along axonal microtubules.
    Bloom GS; Richards BW; Leopold PL; Ritchey DM; Brady ST
    J Cell Biol; 1993 Jan; 120(2):467-76. PubMed ID: 7678421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast axonal transport in isolated axoplasm from the squid giant axon.
    Song Y; Kang M; Morfini G; Brady ST
    Methods Cell Biol; 2016; 131():331-48. PubMed ID: 26794522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein.
    Ratner N; Bloom GS; Brady ST
    J Neurosci; 1998 Oct; 18(19):7717-26. PubMed ID: 9742142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA; Paskevich PA; Sihag RK; Thayer CY
    J Cell Biol; 1994 Aug; 126(4):1031-46. PubMed ID: 7519617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of slow axonal transport in vivo.
    Terada S; Nakata T; Peterson AC; Hirokawa N
    Science; 1996 Aug; 273(5276):784-8. PubMed ID: 8670416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro.
    Vale RD; Schnapp BJ; Mitchison T; Steuer E; Reese TS; Sheetz MP
    Cell; 1985 Dec; 43(3 Pt 2):623-32. PubMed ID: 2416467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast axonal transport in extruded axoplasm from squid giant axon.
    Brady ST; Lasek RJ; Allen RD
    Science; 1982 Dec; 218(4577):1129-31. PubMed ID: 6183745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons.
    Xu Z; Tung VW
    Neuroscience; 2001; 102(1):193-200. PubMed ID: 11226683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm.
    Miller RH; Lasek RJ
    J Cell Biol; 1985 Dec; 101(6):2181-93. PubMed ID: 2415536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport.
    Rao MV; Garcia ML; Miyazaki Y; Gotow T; Yuan A; Mattina S; Ward CM; Calcutt NA; Uchiyama Y; Nixon RA; Cleveland DW
    J Cell Biol; 2002 Aug; 158(4):681-93. PubMed ID: 12186852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of vesicles from squid axoplasm on flagellar microtubules.
    Gilbert SP; Allen RD; Sloboda RD
    Nature; 1985 May 16-22; 315(6016):245-8. PubMed ID: 2582264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospho-dependent association of neurofilament proteins with kinesin in situ.
    Yabe JT; Jung C; Chan WK; Shea TB
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):249-62. PubMed ID: 10744858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Acceleration of Neurofilament Transport at Nodes of Ranvier.
    Walker CL; Uchida A; Li Y; Trivedi N; Fenn JD; Monsma PC; LariviƩre RC; Julien JP; Jung P; Brown A
    J Neurosci; 2019 Jan; 39(4):663-677. PubMed ID: 30541916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.